7 resultados para Chemistry, Analytical|Chemistry, Biochemistry
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Oligonucleotides comprising unnatural building blocks, which interfere with the translation machinery, have gained increased attention for the treatment of gene-related diseases (e.g. antisense, RNAi). Due to structural modifications, synthetic oligonucleotides exhibit increased biostability and bioavailability upon administration. Consequently, classical enzyme-based sequencing methods are not applicable to their sequence elucidation and verification. Tandem mass spectrometry is the method of choice for performing such tasks, since gas-phase dissociation is not restricted to natural nucleic acids. However, tandem mass spectrometric analysis can generate product ion spectra of tremendous complexity, as the number of possible fragments grows rapidly with increasing sequence length. The fact that structural modifications affect the dissociation pathways greatly increases the variety of analytically valuable fragment ions. The gas-phase dissociation of oligonucleotides is characterized by the cleavage of one of the four bonds along the phosphodiester chain, by the accompanying loss of nucleases, and by the generation of internal fragments due to secondary backbone cleavage. For example, an 18-mer oligonucleotide yields a total number of 272’920 theoretical fragment ions. In contrast to the processing of peptide product ion spectra, which nowadays is highly automated, there is a lack of tools assisting the interpretation of oligonucleotide data. The existing web-based and stand-alone software applications are primarily designed for the sequence analysis of natural nucleic acids, but do not account for chemical modifications and adducts. Consequently, we developed a software to support the interpretation of mass spectrometric data of natural and modified nucleic acids and their adducts with chemotherapeutic agents.
Resumo:
The experimental verification of matrix diffusion in crystalline rocks largely relies on indirect methods performed in the laboratory. Such methods are prone to perturbations of the rock samples by collection and preparation and therefore the laboratory-derived transport properties and fluid composition might not represent in situ conditions. We investigated the effects induced by the drilling process and natural rock stress release by mass balance considerations and sensitivity analysis of analytical out-diffusion data obtained from originally saturated, large-sized drillcore material from two locations drilled using traced drilling fluid. For in situ stress-released drillcores of quartz-monzodiorite composition from the Aspo HRL, Sweden, tracer mass balance considerations and 1D and 2D diffusion modelling consistently indicated a contamination of <1% of the original pore water. This chemically disturbed zone extends to a maximum of 0.1 mm into the drillcore (61.8 mm x 180.1 mm) corresponding to about 0.66% of the total pore volume (0.77 vol.%). In contrast, the combined effects of stress release and the drilling process, which have influenced granodioritic drillcore material from 560 m below surface at Forsmark. Sweden, resulted in a maximum contamination of the derived porewater Cl(-) concentration of about 8%. The mechanically disturbed zone with modified diffusion properties covers the outermost similar to 6 mm of the drillcore (50 mm x 189 mm), whereas the chemically disturbed zone extends to a maximum of 0.3 mm based on mass balance considerations, and to 0.15 mm to 0.2 mm into the drillcore based on fitting the observed tracer data. This corresponds to a maximum of 2.4% of the total pore volume (0.62 vol.%) being affected by the drilling-fluid contamination. The proportion of rock volume affected initially by drilling fluid or subsequently with experiment water during the laboratory diffusion and re-saturation experiments depends on the size of the drillcore material and will become larger the smaller the sample used for the experiment. The results are further in support of matrix diffusion taking place in the undisturbed matrix of crystalline rocks at least in the cm range.
Resumo:
We discuss here principal biochemical transformations of retinoid molecules in the visual cycle. We focus our analysis on the accumulating evidence of alternate pathways and functional redundancies in the cycle. The efficiency of the visual cycle depends, on one hand, on fast regeneration of the photo-bleached chromophores. On the other hand, it is crucial that the cyclic process should be highly selective to avoid accumulation of byproducts. The state-of-the-art knowledge indicates that single enzymatically active components of the cycle are not strictly selective and may require chaperones to enhance their rates. It appears that protein–protein interactions significantly improve the biological stability of the visual cycle. In particular, synthesis of thermodynamically less stable 11-cis-retinoid conformers is favored by physical interactions of the isomerases present in the retina with cellular retinaldehyde binding protein
Resumo:
We present the first reference ranges for hematology (n = 35 animals), serum biochemistry (n = 62), and serum protein electrophoresis (n = 32) in physically restrained free-ranging roe deer (Capreolus capreolus). Animals were captured in box traps and physically restrained for blood sampling during the winter in Sweden, 2011-13. No clinically significant sex or age differences were found.