4 resultados para Chemical product

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of a traditional Ethiopian lupin processing method on the chemical composition of lupin seed samples was studied. Two sampling districts, namely Mecha and Sekela, representing the mid- and high-altitude areas of north-western Ethiopia, respectively, were randomly selected. Different types of traditionally processed and marketed lupin seed samples (raw, roasted, and fi nished) were collected in six replications from each district. Raw samples are unprocessed, and roasted samples are roasted using fi rewood. Finished samples are those ready for human consumption as snack. Thousand seed weight for raw and roasted samples within a study district was similar (P > 0.05), but it was lower (P < 0.01) for fi nished samples compared to raw and roasted samples. The crude fi bre content of fi nished lupin seed sample from Mecha was lower (P < 0.01) than that of raw and roasted samples. However, the different lupin samples from Sekela had similar crude fi bre content (P > 0.05). The crude protein and crude fat contents of fi nished samples within a study district were higher (P < 0.01) than those of raw and roasted samples, respectively. Roasting had no effect on the crude protein content of lupin seed samples. The crude ash content of raw and roasted lupin samples within a study district was higher (P < 0.01) than that of fi nished lupin samples of the respective study districts. The content of quinolizidine alkaloids of fi nished lupin samples was lower than that of raw and roasted samples. There was also an interaction effect between location and lupin sample type. The traditional processing method of lupin seeds in Ethiopia has a positive contribution improving the crude protein and crude fat content, and lowering the alkaloid content of the fi nished product. The study showed the possibility of adopting the traditional processing method to process bitter white lupin for the use as protein supplement in livestock feed in Ethiopia, but further work has to be done on the processing method and animal evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major concern of electrocatalysis research is to assess the structural and chemical changes that a catalyst may itself undergo in the course of the catalyzed process. These changes can influence not only the activity of the studied catalyst but also its selectivity toward the formation of a certain product. An illustrative example is the electroreduction of carbon dioxide on tin oxide nanoparticles, where under the operating conditions of the electrolysis (that is, at cathodic potentials), the catalyst undergoes structural changes which, in an extreme case, involve its reduction to metallic tin. This results in a decreased Faradaic efficiency (FE) for the production of formate (HCOO–) that is otherwise the main product of CO2 reduction on SnOx surfaces. In this study, we utilized potential- and time-dependent in operando Raman spectroscopy in order to monitor the oxidation state changes of SnO2 that accompany CO2 reduction. Investigations were carried out at different alkaline pH levels, and a strong correlation between the oxidation state of the surface and the FE of HCOO– formation was found. At moderately cathodic potentials, SnO2 exhibits a high FE for the production of formate, while at very negative potentials the oxide is reduced to metallic Sn, and the efficiency of formate production is significantly decreased. Interestingly, the highest FE of formate production is measured at potentials where SnO2 is thermodynamically unstable; however, its reduction is kinetically hindered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe3+-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 +/- 2 K), and pressure (6 +/- 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6x10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate. Key Words: Martian surface-Organic chemistry-Photochemistry-Astrochemistry-Nontronite-Phyllosilicates. Astrobiology 15, 221-237.