18 resultados para Chemical modification

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 5-HT3 receptor (5-HT3R) is an important ion channel responsible for the transmission of nerve impulses in the CNS and PNS that is activated by the endogenous agonist serotonin (5-hydroxytryptamine, 5-HT). 5-HT3R is the only serotonin receptor belonging to the Cys-loop superfamily of neurotransmitter receptors. Different structural biology approaches can be applied, such as crystallization and x-ray analysis. Nonetheless, characterizing the exact ligand binding site(s) of these dynamic receptors is still challenging. The use of photo-crosslinking probes is an alternative validated approach allowing identification of regions in the protein that are important for the binding of small molecules. We designed our probes based on the core structure of the 5-HT3R antagonist granisetron, a FDA approved drug used for the treatment of chemotherapy-induced nausea and vomiting. We synthesized a small library of photo-crosslinking probes by conjugating diazirines and benzophenones via various linkers to granisetron. We were able to obtain several compounds with diverse linker lengths and different photo-crosslinking moieties that show nanomolar binding affinity for the orthosteric binding site. Furthermore we established a stable h5-HT3R expressing cell line and a purification protocol to yield the receptor in a high purity. Several experiments showed unambiguously that we are able to photo-crosslink our probes with the receptor site-specifically. The functionalised protein was analysed by Western blot and MS-analysis. This yielded the exact covalent modification site, corroborating current ligand binding models derived from mutagenesis and docking studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structure-activity relationship studies were carried out by chemical modification of manzamine A (1), 8-hydroxymanzamine A (2), manzamine F (14), and ircinal isolated from the sponge Acanthostrongylophora. The derived analogues were evaluated for antimalarial, antimicrobial, and antineuroinflammatory activities. Several modified products exhibited potent and improved in vitro antineuroinflammatory, antimicrobial, and antimalarial activity. 1 showed improved activity against malaria compared to chloroquine in both multi- and single-dose in vivo experiments. The significant antimalarial potential was revealed by a 100% cure rate of malaria in mice with one administration of 100 mg/kg of 1. The potent antineuroinflammatory activity of the manzamines will provide great benefit for the prevention and treatment of cerebral infections (e.g., Cryptococcus and Plasmodium). In addition, 1 was shown to permeate across the blood-brain barrier (BBB) in an in vitro model using a MDR-MDCK monolayer. Docking studies support that 2 binds to the ATP-noncompetitive pocket of glycogen synthesis kinase-3beta (GSK-3beta), which is a putative target of manzamines. On the basis of the results presented here, it will be possible to initiate rational drug design efforts around this natural product scaffold for the treatment of several different diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To evaluate morphologically and morphometrically the sequential healing and osseointegration events at moderately rough implant surfaces with and without chemical modification. Particularly the role of bone debris in initiating bone formation was emphasized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The functional capacity of osseointegrated dental implants to bear load is largely dependent on the quality of the interface between the bone and implant. Sandblasted and acid-etched (SLA) surfaces have been previously shown to enhance bone apposition. In this study, the SLA has been compared with a chemically modified SLA (modSLA) surface. The increased wettability of the modSLA surface in a protein solution was verified by dynamic contact angle analysis. Using a well-established animal model with a split-mouth experimental design, implant removal torque testing was performed to determine the biomechanical properties of the bone-implant interface. All implants had an identical cylindrical shape with a standard thread configuration. Removal torque testing was performed after 2, 4, and 8 weeks of bone healing (n = 9 animals per healing period, three implants per surface type per animal) to evaluate the interfacial shear strength of each surface type. Results showed that the modSLA surface was more effective in enhancing the interfacial shear strength of implants in comparison with the conventional SLA surface during early stages of bone healing. Removal torque values of the modSLA-surfaced implants were 8-21% higher than those of the SLA implants (p = 0.003). The mean removal torque values for the modSLA implants were 1.485 N m at 2 weeks, 1.709 N m at 4 weeks, and 1.345 N m at 8 weeks; and correspondingly, 1.231 N m, 1.585 N m, and 1.143 N m for the SLA implants. The bone-implant interfacial stiffness calculated from the torque-rotation curve was on average 9-14% higher for the modSLA implants when compared with the SLA implants (p = 0.038). It can be concluded that the modSLA surface achieves a better bone anchorage during early stages of bone healing than the SLA surface; chemical modification of the standard SLA surface likely enhances bone apposition and this has a beneficial effect on the interfacial shear strength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stability of a triple helix formed between a DNA duplex and an incoming oligonucleotide strand strongly depends on the solvent conditions and on intrinsic chemical and conformational factors. Attempts to increase triple helix stability in the past included chemical modification of the backbone, sugar ring, and bases in the third strand. However, the predictive power of such modifications is still rather poor. We therefore developed a method that allows for rapid screening of conformationally diverse third strand oligonucleotides for triplex stability in the parallel pairing motif to a given DNA double helix sequence. Combinatorial libraries of oligonucleotides of the requisite (fixed) base composition and length that vary in their sugar unit (ribose or deoxyribose) at each position were generated. After affinity chromatography against their corresponding immobilized DNA target duplex, utilizing a temperature gradient as the selection criterion, the oligonucleotides forming the most stable triple helices were selected and characterized by physicochemical methods. Thus, a series of oligonucleotides were identified that allowed us to define basic rules for triple helix stability in this conformationally diverse system. It was found that ribocytidines in the third strand increase triplex stability relative to deoxyribocytidines independently of the neighboring bases and position along the strand. However, remarkable sequence-dependent differences in stability were found for (deoxy)thymidines and uridines

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Virus-like particles (VLPs) are non-infectious self-assembling nanoparticles, useful in medicine and nanotechnology. Their repetitive molecularly-defined architecture is attractive for engineering multivalency, notably for vaccination. However, decorating VLPs with target-antigens by genetic fusion or chemical modification is time-consuming and often leads to capsid misassembly or antigen misfolding, hindering generation of protective immunity. Here we establish a platform for irreversibly decorating VLPs simply by mixing with protein antigen. SpyCatcher is a genetically-encoded protein designed to spontaneously form a covalent bond to its peptide-partner SpyTag. We expressed in E. coli VLPs from the bacteriophage AP205 genetically fused to SpyCatcher. We demonstrated quantitative covalent coupling to SpyCatcher-VLPs after mixing with SpyTag-linked to malaria antigens, including CIDR and Pfs25. In addition, we showed coupling to the VLPs for peptides relevant to cancer from epidermal growth factor receptor and telomerase. Injecting SpyCatcher-VLPs decorated with a malarial antigen efficiently induced antibody responses after only a single immunization. This simple, efficient and modular decoration of nanoparticles should accelerate vaccine development, as well as other applications of nanoparticle devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Keywords High-pressure fluids · Whiteschists · U–Pb dating · Oxygen isotopes · Ion microprobe · Metasomatism Introduction The subduction of crustal material to mantle depths and its chemical modification during burial and exhumation contribute to element recycling in the mantle and the formation of new crust through arc magmatism. Crustal rocks that Abstract The Dora-Maira whiteschists derive from metasomatically altered granites that experienced ultrahighpressure metamorphism at ~750 °C and 40 kbar during the Alpine orogeny. In order to investigate the P–T–time– fluid evolution of the whiteschists, we obtained U–Pb ages from zircon and monazite and combined those with trace element composition and oxygen isotopes of the accessory minerals and coexisting garnet. Zircon cores are the only remnants of the granitic protolith and still preserve a Permian age, magmatic trace element compositions and δ18O of ~10 ‰. Thermodynamic modelling of Si-rich and Si-poor whiteschist compositions shows that there are two main fluid pulses during prograde subduction between 20 and 40 kbar. In Si-poor samples, the breakdown of chlorite to garnet + fluid occurs at ~22 kbar. A first zircon rim directly overgrowing the cores has inclusions of prograde phlogopite and HREE-enriched patterns indicating zircon growth at the onset of garnet formation. A second main fluid pulse is documented close to peak metamorphic conditions in both Si-rich and Si-poor whiteschist when talc + kyanite react to garnet + coesite + fluid. A second metamorphic overgrowth on zircon with HREE depletion was observed in the Si-poor whiteschists, whereas a single metamorphic overgrowth capturing phengite and talc inclusions was observed in the Si-rich whiteschists. Garnet rims, zircon rims and monazite are in chemical and isotopic equilibrium for oxygen, demonstrating that they all formed at peak metamorphism at 35 Ma as constrained by the age of monazite (34.7 ± 0.4 Ma) and zircon rims (35.1 ± 0.8 Ma). The prograde zircon rim in Si-poor whiteschists has an age that is within error indistinguishable from the age of peak metamorphic conditions, consistent with a minimum rate of subduction of 2 cm/year for the Dora-Maira unit. Oxygen isotope values for zircon rims, monazite and garnet are equal within error at 6.4 ± 0.4 ‰, which is in line with closed-system equilibrium fractionation during prograde to peak temperatures. The resulting equilibrium Δ18Ozircon-monazite at 700 ± 20 °C is 0.1 ± 0.7 ‰. The in situ oxygen isotope data argue against an externally derived input of fluids into the whiteschists. Instead, fluidassisted zircon and monazite recrystallisation can be linked to internal dehydration reactions during prograde subduction. We propose that the major metasomatic event affecting the granite protolith was related to hydrothermal seafloor alteration post-dating Jurassic rifting, well before the onset of Alpine subduction.