11 resultados para Chemical agents (Munitions)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Agricultural workers are exposed to various risks, including chemical agents, noise, and many other factors. One of the most characteristic and least known risk factors is constituted by the microclimatic conditions in the different phases of work (in field, in greenhouse, etc). A typical condition is thermal stress due to high temperatures during harvesting operations in open fields or in greenhouses. In Italy, harvesting is carried out for many hours during the day, mainly in the summer, with temperatures often higher than 30 degrees C. According to ISO 7243, these conditions can be considered dangerous for workers' health. The aim of this study is to assess the risks of exposure to microclimatic conditions (heat) for fruit and vegetable harvesters in central Italy by applying methods established by international standards. In order to estimate the risk for workers, the air temperature, radiative temperature, and air speed were measured using instruments in conformity with ISO 7726. Thermodynamic parameters and two more subjective parameters, clothing and the metabolic heat production rate related to the worker's physical activity, were used to calculate the predicted heat strain (PHS) for the exposed workers in conformity with ISO 7933. Environmental and subjective parameters were also measured for greenhouse workers, according to ISO 7243, in order to calculate the wet-bulb globe temperature (WBGT). The results show a slight risk for workers during manual harvesting in the field. On the other hand, the data collected in the greenhouses show that the risk for workers must not be underestimated. The results of the study show that, for manual harvesting work in climates similar to central Italy, it is essential to provide plenty of drinking water and acclimatization for the workers in order to reduce health risks. Moreover, the study emphasizes that the possible health risks for greenhouse workers increase from the month of April through July.
Resumo:
For the past 10 years, medical imaging techniques have been increasingly applied to forensic investigations. To obtain histological and toxicological information, tissue and liquid samples are required. In this article, we describe the development of a low-cost, secure, and reliable approach for a telematic add-on for remotely planning biopsies on the Virtobot robotic system. Data sets are encrypted and submitted over the Internet. A plugin for the OsiriX medical image viewer allows for remote planning of needle trajectories that are used for needle placement. The application of teleradiological methods to image-guided biopsy in the forensic setting has the potential to reduce costs and, in conjunction with a mobile computer tomographic scanner, allows for tissue sampling in a mass casualty situation involving nuclear, biological, or chemical agents, in a manner that minimizes the risk to involved staff.
Resumo:
The prevention of ischaemia and the adequate restitution of blood flow to ischaemic tissue are pivotal to halt the progression of cellular injury associated with decreased oxygen and nutrient supply. Accordingly, the search for novel strategies which aim at preventing ischaemia-reperfusion-induced tissue damage is still of major interest in flap surgery. Preconditioning represents an elegant approach to render the tissue more resistant against deleterious ischaemic insults. For many decades, 'surgical delay' has been the standard method of tissue preconditioning. During the last 10 years, ischaemic preconditioning was added to the repertoire of plastic surgeons to protect flaps from ischaemic necrosis. The invasiveness and expenditure of time of these procedures, however, have always been major drawbacks, hindering a wide distribution in clinical practice. Consequently, the motivation has all along been to further refine and simplify protective strategies. Recent experimental studies have now shown that efficient protection from ischaemic necrosis can also be achieved by remote preconditioning or pretreatment with chemical agents and growth factors, which mimic the action of surgical delay and ischaemic preconditioning. In addition, the local application of unspecific stressors, including both heating and cooling, have been shown to effectively improve flap microcirculation and, thus, tissue survival. In view of successful translational research, it is now time that the efficacy of these novel preconditioning procedures is proven in prospective randomised clinical trials.
Resumo:
Two highly efficient (K2CO3/sludge carbon and ZnCl2/sludge carbon) solids were prepared by chemical addition following carbonization at 800 °C and were tested for anaerobic reduction of tartrazine dye in a continuous upflow packed-bed biological reactor, and their performance was compared to that of commercial activated carbon (CAC). The chemical and structural information of the solids was subjected to various characterizations in order to understand the mechanism for anaerobic decolorization, and efficiency for SBCZN800 and SBCPC800 materials was 87% and 74%, respectively, at a short space time (τ) of 2.0 min. A first-order kinetic model fitted the experimental points and kinetic constants of 0.40, 0.92 and 1.46 min(-1) were obtained for SBCZN800, SBCPC800 and CAC, respectively. The experimental results revealed that performance of solids in the anaerobic reduction of tartrazine dye can depend on several factors including chemical agents, carbonization, microbial population, chemical groups and surface chemistry. The Langmuir and Freundlich models are successfully described in the batch adsorption data. Based on these observations, a cost-effective sludge-based catalyst can be produced from harmful sewage sludge for the treatment of industrial effluents.
Resumo:
CONTEXT Chemical eye injuries are ophthalmological emergencies with a high risk of secondary complications and severe visual loss. Only limited epidemiological data for such injuries are available for many countries. PATIENTS AND METHODS We performed two independent studies. The cause of chemical eye injuries was assessed with a prospective questionnaire study. Questionnaires were sent to all ophthalmologists in Switzerland. A total of 163 patients (205 eyes) were included, between December 2012 and October 2014. Independent of the questionnaire study, the incidence of chemical eye injuries was assessed with a retrospective cohort study design using the database of the mandatory accident insurance. RESULTS Ophthalmological questionnaires revealed that plaster/cement (20.5%), alkaline (12.2%) and acid (10.2%) solutions caused the highest number of chemical injuries. Only 2% of all injuries were classified as grade III and none as grade IV (Roper-Hall classification). The official toxicological information phone-hotline was contacted in 4.3% of cases. Using data from the accident insurance, an incidence of chemical eye injuries of about 50/100 000/year was found in the working population. CONCLUSION Here, we present data on the involved agents of chemical eye injuries in Switzerland, and also the incidence of such injuries in the working population. This may also help to assess the need for further education programs and to improve and direct preventive measures.
Resumo:
The synthesis, radiolabeling, and initial evaluation of new silicon-fluoride acceptor (SiFA) derivatized octreotate derivatives is reported. So far, the main drawback of the SiFA technology for the synthesis of PET-radiotracers is the high lipophilicity of the resulting radiopharmaceutical. Consequently, we synthesized new SiFA-octreotate analogues derivatized with Fmoc-NH-PEG-COOH, Fmoc-Asn(Ac?AcNH-?-Glc)-OH, and SiFA-aldehyde (SIFA-A). The substances could be labeled in high yields (38 ± 4%) and specific activities between 29 and 56 GBq/?mol in short synthesis times of less than 30 min (e.o.b.). The in vitro evaluation of the synthesized conjugates displayed a sst2 receptor affinity (IC?? = 3.3 ± 0.3 nM) comparable to that of somatostatin-28. As a measure of lipophilicity of the conjugates, the log P(ow) was determined and found to be 0.96 for SiFA-Asn(AcNH-?-Glc)-PEG-Tyr³-octreotate and 1.23 for SiFA-Asn(AcNH-?-Glc)-Tyr³-octreotate, which is considerably lower than for SiFA-Tyr³-octreotate (log P(ow) = 1.59). The initial in vivo evaluation of [¹?F]SiFA-Asn(AcNH-?-Glc)-PEG-Tyr³-octreotate revealed a significant uptake of radiotracer in the tumor tissue of AR42J tumor-bearing nude mice of 7.7% ID/g tissue weight. These results show that the high lipophilicity of the SiFA moiety can be compensated by applying hydrophilic moieties. Using this approach, a tumor-affine SiFA-containing peptide could successfully be used for receptor imaging for the first time in this proof of concept study.
Resumo:
BACKGROUND: Human African trypanosomiasis (HAT), a major parasitic disease spread in Africa, urgently needs novel targets and new efficacious chemotherapeutic agents. Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine (compound 1) exhibits specific antitrypanosomal activity with an IC(50) of 1.0 microM on Trypanosoma brucei rhodesiense (T. b. rhodesiense), the causative agent of the acute form of HAT. METHODOLOGY/PRINCIPAL FINDINGS: In this work we show adenosine kinase of T. b. rhodesiense (TbrAK), a key enzyme of the parasite purine salvage pathway which is vital for parasite survival, to be the putative intracellular target of compound 1 using a chemical proteomics approach. This finding was confirmed by RNA interference experiments showing that down-regulation of adenosine kinase counteracts compound 1 activity. Further chemical validation demonstrated that compound 1 interacts specifically and tightly with TbrAK with nanomolar affinity, and in vitro activity measurements showed that compound 1 is an enhancer of TbrAK activity. The subsequent kinetic analysis provided strong evidence that the observed hyperactivation of TbrAK is due to the abolishment of the intrinsic substrate-inhibition. CONCLUSIONS/SIGNIFICANCE: The results suggest that TbrAK is the putative target of this compound, and that hyperactivation of TbrAK may represent a novel therapeutic strategy for the development of trypanocides.
Resumo:
An imminent food crisis reinforces the need for novel strategies to increase crop yields worldwide. Effective control of pest insects should be part of such strategies, preferentially with reduced negative impact on the environment and optimal protection and utilization of existing biodiversity. Enhancing the presence and efficacy of native biological control agents could be one such strategy. Plant strengthener is a generic term for several commercially available compounds or mixtures of compounds that can be applied to cultivated plants in order to ‘boost their vigour, resilience and performance’. Studies into the consequences of boosting plant resistance against pests and diseases on plant volatiles have found a surprising and dramatic increase in the plants' attractiveness to parasitic wasps. Here, we summarize the results from these studies and present new results from assays that illustrate the great potential of two commercially available resistance elicitors. We argue that plant strengtheners may currently be the best option to enhance the attractiveness of cultivated plants to biological control agents. Other options, such as the genetic manipulation of the release of specific volatiles may offer future solutions, but in most systems, we still miss fundamental knowledge on which key attractants should be targeted for this approach.
Resumo:
Deoxyribozymes or DNAzymes are single-stranded catalytic DNA molecules that are obtained by combinatorial in vitro selection methods. Initially conceived to function as gene silencing agents, the scope of DNAzymes has rapidly expanded into diverse fields, including biosensing, diagnostics, logic gate operations, and the development of novel synthetic and biological tools. In this review, an overview of all the different chemical reactions catalyzed by DNAzymes is given with an emphasis on RNA cleavage and the use of non-nucleosidic substrates. The use of modified nucleoside triphosphates (dN*TPs) to expand the chemical space to be explored in selection experiments and ultimately to generate DNAzymes with an expanded chemical repertoire is also highlighted.