12 resultados para Ceramic material

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase stability, elastic behavior, and pressure-induced structural evolution of synthetic boron-mullite Al5BO9 (a = 5.6780(7), b = 15.035(6), and c =7.698(3) Å, space group Cmc21, Z = 4) were investigated up to 25.6(1) GPa by in situ single-crystal synchrotron X-ray diffraction with a diamond anvil cell (DAC) under hydrostatic conditions. No evidence of phase transition was observed up to 21.7(1) GPa. At 25.6(1) GPa, the refined unit-cell parameters deviated significantly from the compressional trend, and the diffraction peaks appeared broader than at lower pressure. At 26.7(1) GPa, the diffraction pattern was not indexable, suggesting amorphization of the material or a phase transition to a high-pressure polymorph. Fitting the P–V data up to 21.7(1) GPa with a second-order Birch–Murnaghan Equation-of-State, we obtained a bulk modulus KT0 = 164(1) GPa. The axial compressibilities, here described as linearized bulk moduli, are as follows: KT0(a) = 244(9), KT0(b) = 120(4), and KT0(c) = 166(11) GPa (KT0(a):KT0(b):KT0(c) = 2.03:1:1.38). The structure refinements allowed a description of the main deformation mechanisms in response to the applied pressure. The stiffer crystallographic direction appears to be controlled by the infinite chains of edge-sharing octahedra running along [100], making the structure less compressible along the a-axis than along the b- and c-axis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This in vitro study evaluated the performance of three ceramic and two commonly used polishing methods on two CAD/CAM ceramics. Surface roughness and quality were compared. A glazed group (GLGR) of each ceramic material served as reference. One-hundred and twenty specimens of VITABLOCS Mark II (VITA) and 120 specimens of IPS Empress CAD (IPS) were roughened in a standardized manner. Twenty VITA and 20 IPS specimens were glazed (VITA Akzent Glaze/Empress Universal Glaze). Five polishing methods were investigated (n=20/group): 1) EVE Diacera W11DC-Set (EVE), 2) JOTA 9812-Set (JOTA), 3) OptraFine-System (OFI), 4) Sof-Lex 2382 discs (SOF) and 5) Brownie/Greenie/Occlubrush (BGO). Polishing quality was measured with a surface roughness meter (Ra and Rz values). The significance level was set at alpha=0.05. Kruskal Wallis tests and pairwise Wilcoxon rank sum tests with Bonferroni-Holm adjustment were used. Qualitative surface evaluation of representative specimens was done with SEM. On VITA ceramics, SOF produced lower Ra (p<0.00001) but higher Rz values than GLGR (p=0.003); EVE, JOTA, OFI and BGO yielded significantly higher Ra and Rz values than GLGR. On IPS ceramics, SOF and JOTA exhibited lower Ra values than GLGR (p<0.0001). Equivalent Ra but significantly higher Rz values occurred between GLGR and EVE, OFI or BGO. VITA and IPS exhibited the smoothest surfaces when polished with SOF. Nevertheless, ceramic polishing systems are still of interest to clinicians using CAD/CAM, as these methods are universally applicable and showed an increased durability compared to the investigated silicon polishers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we investigated if monolayer expansion of adult human articular chondrocytes (AHAC) on specific substrates regulates cell phenotype and post-expansion multilineage differentiation ability. AHAC isolated from cartilage biopsies of five donors were expanded on plastic dishes (PL), on dishes coated with collagen type II (COL), or on slides coated with a ceramic material (Osteologic, OS). The phenotype of expanded chondrocytes was assessed by flow cytometry and real-time RT-PCR. Cells were then cultured in previously established conditions promoting differentiation toward the chondrogenic or osteogenic lineage. AHAC differentiation was assessed histologically, biochemically, and by real-time RT-PCR. As compared to PL-expanded AHAC, those expanded on COL did not exhibit major phenotypic changes, whereas OS-expanded cells expressed (i) higher bone sialoprotein (BSP) (22.6-fold) and lower collagen type II (9.3-fold) mRNA levels, and (ii) lower CD26, CD90 and CD140 surface protein levels (1.4-11.1-fold). Following chondrogenic differentiation, COL-expanded AHAC expressed higher mRNA levels of collagen type II (2.3-fold) and formed tissues with higher glycosaminoglycan (GAG) contents (1.7-fold), whereas OS-expanded cells expressed 16.5-fold lower collagen type II and generated pellets with 2.0-fold lower GAG contents. Following osteogenic differentiation, OS-expanded cells expressed higher levels of BSP (3.9-fold) and collagen type I (2.8-fold) mRNA. In summary, AHAC expansion on COL or OS modulated the de-differentiated cell phenotype and improved the cell differentiation capacity respectively toward the chondrogenic or osteogenic lineage. Phenotypic changes induced by AHAC expansion on specific substrates may mimic pathophysiological events occurring at different stages of osteoarthritis and may be relevant for the engineering of osteochondral tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(methyl methacrylate) (PMMA) is by far the most frequently used bone substitute material for vertebroplasty. However, there are serious complications, such as cement leakage and an increased fracture rate of the adjacent vertebral bodies. The latter may be related to the mechanical properties of the augmented segment within the osteoporotic spine. A possible counter-measure is prophylactic augmentation at additional levels, but this aggravates the risk for the patient. Introduction of pores is a possible method to reduce the inherent high stiffness of PMMA. This study investigates the effect of porosity on the mechanical properties of PMMA bone cement. Different fractions of a highly viscous liquid were mixed into the PMMA during preparation. An open-porous material with adjustable mechanical properties resulted after removal of the aqueous phase. Different radiopacifiers were admixed to investigate their suitability for vertebroplasty. The final material was characterized mechanically by compressive testing, microscopically and radiologically. In addition, the monomer release subsequent to hardening was measured by means of gas chromatography. The Young's modulus in compression could be varied between 2800 +/- 70 MPa and 120 +/- 150 MPa, and the compression ultimate strength between 170 +/- 5 MPa and 8 +/- 9 MPa for aqueous fractions ranging between 0 and 50% of volume. Only a slight decrease of the Young's modulus and small changes of ultimate strength were found when the mixing time was increased. An organic hydrophilic and lipophilic radiopacifier led to a higher Young's modulus of the porous material; however, the ultimate strength was not significantly affected by adding different radiopacifiers to the porous cement. The radiopacity was lost after washing the aqueous phase out of the pores. No separation occurred between the aqueous and the PMMA phase during injection into an open porous ceramic material. The monomer released was found to increase for increasing aqueous fractions, but remained comparable in magnitude to standard PMMA. This study demonstrates that a conventional PMMA can be modified to obtain a range of mechanical properties, including those of osteoporotic bone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To investigate the bond strength to dentin of two recent resin-ceramic materials for computer-aided design/computer-aided manufacturing (CAD/CAM) after 24 hours and after six months storage. Methods and Materials: Ninety cylinders were milled out of Lava Ultimate (3M ESPE) and 90 cylinders out of VITA ENAMIC (VITA Zahnfabrik) (dimension of cylinders: ∅=3.6 mm, h=2 mm). All Lava Ultimate cylinders were sandblasted (aluminium oxide, grain size: 27 μm) and cleaned with ethanol, whereas all VITA ENAMIC cylinders were acid-etched (5% hydrofluoric acid) and cleaned with water-spray. According to the three groups of cements used, the cylinders (n=30/resin-ceramic material) were further pretreated with 1) Scotchbond Universal for RelyX Ultimate (3M ESPE), 2) CLEARFIL Ceramic Primer for PANAVIA F2.0 (Kuraray), or 3) no further pretreatment for Ketac Cem Plus (3M ESPE). The cylinders were then bonded to ground human dentin specimens with 1) Scotchbond Universal and RelyX Ultimate (light-cured), 2) ED PRIMER II and PANAVIA F2.0 (light-cured), or 3) no adhesive system; Ketac Cem Plus (self-cured). Shear bond strength (SBS) was measured after 24 hours for 15 specimens/group and after six months (37°C, 100% humidity) for the other 15 specimens/group. SBS-values were statistically analysed with nonparametric ANOVA followed by exact Wilcoxon rank sum tests (α=0.05). Results: SBS of the two resin-ceramic materials and the three cements after 24 hours and after six months storage are shown in Figure 1. The statistical analysis showed that the duration of storage had a significant effect on SBS of Lava Ultimate for all three cements but had no significant effect on SBS of VITA ENAMIC. For Lava Ultimate SBS-values were (MPa; medians after 24 hours/six months): 13.5/22.5 (p=0.04) for RelyX Ultimate, 11.4/5.8 (p=0.0006) for PANAVIA F2.0, and 0.34/0.09 (p=0.04) for Ketac Cem Plus (Fig. 1). For VITA ENAMIC SBS-values were (MPa; medians after 24 hours/six months): 16.0/21.2 (p=0.10) for RelyX Ultimate, 11.4/14.4 (p=0.06) for PANAVIA F2.0, and 0.43/0.41 (p=0.32) for Ketac Cem Plus (Fig. 1). After 24 hours, there was no significant difference in SBS between Lava Ultimate and VITA ENAMIC for all three cements (p≥0.37). After six months, there was no significant difference in SBS between Lava Ultimate and VITA ENAMIC for RelyX Ultimate and Ketac Cem Plus (p≥0.07) whereas for PANAVIA F2.0, SBS was significantly lower for Lava Ultimate than for VITA ENAMIC (p<0.0001). Conclusion: SBS of Lava Ultimate was more affected by six months storage and by the cement used than was VITA ENAMIC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rehabilitation of a patient with advanced tooth wear by means of Procera ZrO2 ceramic crowns is described. A healthy, 60 year old patient complained about front teeth esthetics and impaired function due to reduced tooth height. He was aware of bruxism and wished full mouth rehabilitation. The clinical examination showed that tooth wear was generalized, but most teeth could be maintained in both jaws. A staged procedure was planned, starting with a splint therapy and a provisional fixed prosthesis to reestablish correct vertical dimension of occlusion (VDO) and stable occlusal contacts. The new ZrO2 material with the Procera technique was chosen to restore all teeth in both jaws, except the mandible front teeth. In the second treatment phase, crown lengthening of the maxillary front teeth was performed and one implant placed to replace a maxillary premolar. After final tooth preparation, impression taking and bite registration the ZrO2 crown-copings were scanned, processed and completed by veneering. A flat occlusal scheme with stable front teeth guidance was established. The advantage of the presented treatment is the esthetic result in combination with a material of high mechanical and biological quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STATEMENT OF PROBLEM: AuTi alloys with 1.6% to 1.7% (wt%) Ti provide sufficient bond strength to veneering ceramics, but the strength of entire metal-ceramic restorations fabricated from these alloys is not known. However, this information is important to assess the clinical performance of such materials. PURPOSE: This in vitro study evaluated the fracture strength and thermal shock resistance of metal-ceramic crowns with AuTi frameworks produced by milling or casting. MATERIAL AND METHODS: Frameworks of the alloy Au-1.7Ti-0.1Ir (wt%) (Esteticor Vision) were produced by milling or casting (test groups). A high-gold alloy (Esteticor Special) was used as the control. The frameworks were veneered with ceramic (VMK 95). Specimens (n=7) were loaded until fracture. Loads at failure (N) were recorded and the mean values statistically evaluated using 1-way analysis of variance and a post hoc Dunnett test (alpha=.05). To assess the crazing resistance of the veneering ceramic, 6 additional crowns of each group were subjected to a thermal shock test. Fractured surfaces were documented by scanning electron microscopy. Coefficients of thermal expansion of the materials used were measured (n=2) to assess the thermal compatibility between alloys and ceramic. RESULTS: The mean fracture strength of the crowns with machined AuTi frameworks (1294 +/- 236 N) was significantly lower (P=.012) than that of the cast AuTi frameworks (1680 +/- 150 N), but statistically not different than the high-gold alloy (1449 +/- 159 N). Bonding failure to the AuTi alloy predominantly occurred at the alloy-oxide interface. For the high-gold alloy, more ceramic residues were observed. In the thermal shock test, crowns with milled AuTi frameworks showed significantly higher thermal shock resistance compared to the other groups. The coefficients of thermal expansion (Esteticor Vision cast: 14.5 microm/m.K; Esteticor Vision milled: 14.3 microm/m.K; Esteticor Special cast: 13.7 microm/m.K) did not correlate with the results of the thermal shock test. CONCLUSION: The in vitro fracture strength of crowns with milled AuTi frameworks is lower than that obtained with cast AuTi frameworks, but comparable to those crowns produced with a high-gold alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: This investigation was designed to compare the histomorphometric results from sinus floor augmentation with anorganic bovine bone (ABB) and a new biphasic calcium phosphate, Straumann Bone Ceramic (BCP). MATERIALS AND METHODS: Forty-eight maxillary sinuses were treated in 37 patients. Residual bone width was > or =6 mm and height was > or =3 mm and <8 mm. Lateral sinus augmentation was used, with grafting using either ABB (control group; 23 sinuses) or BCP (test group; 25 sinuses); sites were randomly assigned to the control or test groups. After 180-240 days of healing, implant sites were created and biopsies taken for histological and histomorphometric analyses. The parameters assessed were (1) area fraction of new bone, soft tissue, and graft substitute material in the grafted region; (2) area fraction of bone and soft tissue components in the residual alveolar ridge compartment; and (3) the percentage of surface contact between the graft substitute material and new bone. RESULTS: Measurable biopsies were available from 56% of the test and 81.8% of the control sites. Histology showed close contact between new bone and graft particles for both groups, with no significant differences in the amount of mineralized bone (21.6+/-10.0% for BCP vs. 19.8+/-7.9% for ABB; P=0.53) in the biopsy treatment compartment of test and control site. The bone-to-graft contact was found to be significantly greater for ABB (48.2+/-12.9% vs. 34.0+/-14.0% for BCP). Significantly less remaining percentage of graft substitute material was found in the BCP group (26.6+/-5.2% vs. 37.7+/-8.5% for ABB; P=0.001), with more soft tissue components (46.4+/-7.7% vs. 40.4+/-7.3% for ABB; P=0.07). However, the amount of soft tissue components for both groups was found not to be greater than in the residual alveolar ridge. DISCUSSION: Both ABB and BCP produced similar amounts of newly formed bone, with similar histologic appearance, indicating that both materials are suitable for sinus augmentation for the placement of dental implants. The potential clinical relevance of more soft tissue components and different resorption characteristics of BCP requires further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental identification is the most valuable method to identify human remains in single cases with major postmortem alterations as well as in mass casualties because of its practicability and demanding reliability. Computed tomography (CT) has been investigated as a supportive tool for forensic identification and has proven to be valuable. It can also scan the dentition of a deceased within minutes. In the present study, we investigated currently used restorative materials using ultra-high-resolution dual-source CT and the extended CT scale for the purpose of a color-encoded, in scale, and artifact-free visualization in 3D volume rendering. In 122 human molars, 220 cavities with 2-, 3-, 4- and 5-mm diameter were prepared. With presently used filling materials (different composites, temporary filling materials, ceramic, and liner), these cavities were restored in six teeth for each material and cavity size (exception amalgam n = 1). The teeth were CT scanned and images reconstructed using an extended CT scale. Filling materials were analyzed in terms of resulting Hounsfield units (HU) and filling size representation within the images. Varying restorative materials showed distinctively differing radiopacities allowing for CT-data-based discrimination. Particularly, ceramic and composite fillings could be differentiated. The HU values were used to generate an updated volume-rendering preset for postmortem extended CT scale data of the dentition to easily visualize the position of restorations, the shape (in scale), and the material used which is color encoded in 3D. The results provide the scientific background for the application of 3D volume rendering to visualize the human dentition for forensic identification purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analysis about the effect of carbon enrichment of allylhydridopolycarbosilane SMP10® with divinylbenzene (DVB) as a promising material for electrical conductive micro-electrical mechanical systems (MEMS) is presented. The liquid precursors can be micropipetted and cured in polytetrafluoroethylene (PTFE) molds to produce 14 mm diameter disc shaped samples. The effect of pyrolysis temperature and carbon content on the electrical conductivity is discussed. The addition of 28.7 wt.% of DVB was found to be the optimum amount. Carbon was preserved in the microstructure during pyrolysis and the ceramic yield increased from 77.5 to 80.5 wt.%. The electrical conductivity increased from 10−6 to 1 S/cm depending on the annealing temperature. Furthermore, the ceramic samples obtained with this composition were found to be in many cases crack free or with minimal cracks in contrast with the behavior of pure SMP10. Using the same process we demonstrate that also microsized ceramic samples can be produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this short review, we provide some new insights into the material synthesis and characterization of modern multi-component superconducting oxides. Two different approaches such as the high-pressure, high-temperature method and ceramic combinatorial chemistry will be reported with application to several typical examples. First, we highlight the key role of the extreme conditions in the growth of Fe-based superconductors, where a careful control of the composition-structure relation is vital for understanding the microscopic physics. The availability of high-quality LnFeAsO (Ln = lanthanide) single crystals with substitution of O by F, Sm by Th, Fe by Co, and As by P allowed us to measure intrinsic and anisotropic superconducting properties such as Hc2, Jc. Furthermore, we demonstrate that combinatorial ceramic chemistry is an efficient way to search for new superconducting compounds. A single-sample synthesis concept based on multi-element ceramic mixtures can produce a variety of local products. Such a system needs local probe analyses and separation techniques to identify compounds of interest. We present the results obtained from random mixtures of Ca, Sr, Ba, La, Zr, Pb, Tl, Y, Bi, and Cu oxides reacted at different conditions. By adding Zr but removing Tl, Y, and Bi, the bulk state superconductivity got enhanced up to about 122 K.