62 resultados para Cement Stabilisation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The management of insufficiency fractures of the tibial plateau in osteoporotic patients can be very challenging, since it is difficult to achieve a stable fixation, an essential condition for the patients' early mobilization. We present a minimally invasive technique for the treatment of proximal tibial plateau fractures, "tibiaplasty", using percutaneous polymethylmethacrylate augmentation. Five osteoporotic patients (7 fractures) with a non-traumatic insufficiency tibial plateau fracture were treated with this technique at the authors' institution from 2006 to 2008. The patients' median age was 79 (range 62-88) years. The intervention was performed percutaneously under general or spinal anesthesia; after the intervention, immediate full weight bearing was allowed. The technique was feasible in all patients and no complications related to the intervention were observed. All patients reported a relevant reduction in pain, were able to mobilize with full weight bearing and would undergo the operation again. No secondary loss of reduction or progression of arthrosis was observed in radiological controls; no revision surgery was required. Our initial results indicate that tibiaplasty is a good treatment option for the management of insufficiency in tibial plateau fractures in osteoporotic patients. The technique is minimally invasive, safe and allows immediate mobilization without restrictions. In our group of patients, we found excellent early to mid-term results.
Resumo:
Vertebroplasty is a minimally invasive procedure with many benefits; however, the procedure is not without risks and potential complications, of which leakage of the cement out of the vertebral body and into the surrounding tissues is one of the most serious. Cement can leak into the spinal canal, venous system, soft tissues, lungs and intradiscal space, causing serious neurological complications, tissue necrosis or pulmonary embolism. We present a method for automatic segmentation and tracking of bone cement during vertebroplasty procedures, as a first step towards developing a warning system to avoid cement leakage outside the vertebral body. We show that by using active contours based on level sets the shape of the injected cement can be accurately detected. The model has been improved for segmentation as proposed in our previous work by including a term that restricts the level set function to the vertebral body. The method has been applied to a set of real intra-operative X-ray images and the results show that the algorithm can successfully detect different shapes with blurred and not well-defined boundaries, where the classical active contours segmentation is not applicable. The method has been positively evaluated by physicians.
Resumo:
Data concerning the safety of sacroplasty in terms of cement leakage is scarce. Frequency, distribution patterns and clinical consequences of cement leakage were assessed in 33 patients (28 female, mean age: 74 +/- 10 yrs; bilateral SIF: n = 30, 63 sacroplasties) treated with sacroplasty between 06/2003 and 11/2010 in a retrospective study using patients' records, operative notes and postoperative radiographs. Cement leakage was noted within the fracture gap (27%), into veins (6%), neuroforamina (3%) or in the intervertebral disc space L5/S1 (2%). In one patient, cement leakage into the fracture gap led to unilateral radiculopathy of the 5th lumbar nerve root. Leakage into the fracture gap is at high risk of affecting the 5th lumbar nerve root due to the special course of its ventral branch over the sacral promontory. The risks of cement leakage with neurological impairment should be explained to patients.
Resumo:
Vertebroplasty restores stiffness and strength of fractured vertebral bodies, but alters their stress transfer. This unwanted effect may be reduced by using more compliant cements. However, systematic experimental comparison of structural properties between standard and low-modulus augmentation needs to be done. This study investigated how standard and low-modulus cement augmentation affects apparent stiffness, strength, and endplate pressure distribution of vertebral body sections.