3 resultados para Cell milieu

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS to not disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses can be mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly controlling immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier, which protect the CNS from the constantly changing milieu within the bloodstream, also strictly control immune cell entry into the CNS. Under physiological conditions, immune cell migration into the CNS is kept at a very low level. In contrast, during a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis, immunocompetent cells readily traverse the BBB and likely also the choroid plexus and subsequently enter the CNS parenchyma or CSF spaces. This chapter summarizes our current knowledge of immune cell entry across the blood CNS barriers. A large body of the currently available information on immune cell entry into the CNS has been derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Therefore, most of this chapter discussing immune cell entry during CNS pathogenesis refers to observations in the EAE model, allowing for the possibility that other mechanisms of immune cell entry into the CNS might apply under different pathological conditions such as bacterial meningitis or stroke.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The endothelial blood–brain barrier (BBB) and the epithelial blood–cerebrospinal fluid barrier protect the CNS from the constantly changing milieu within the bloodstream. The BBB strictly controls immune cell entry into the CNS, which is rare under physiological conditions. During a variety of pathological conditions of the CNS, such as viral or bacterial infections, or during inflammatory diseases, such as multiple sclerosis, immunocompetent cells readily traverse the BBB and subsequently enter the CNS parenchyma. Most of the available information on immune cell entry into the CNS is derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Consequently, our current knowledge on traffic signals mediating immune cell entry across the BBB during immunosurveillance and disease results mainly from experimental data in the EAE model. Therefore, a large part of this review summarizes these findings. Similarly, the potential benefits and risks associated with therapeutic targeting of immune cell trafficking across the BBB will be discussed in the context of multiple sclerosis, since elucidation of the molecular mechanisms relevant to this disease have largely relied on the use of its in vivo model, EAE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FOXP3-expressing naturally occurring CD4(+)CD25(high) T regulatory cells (Treg) are relevant in the control of autoimmunity, and a defect in this cell population has been observed in several human autoimmune diseases. We hypothesized that altered functions of peripheral Treg cells might play a role in the immunopathogenesis of myasthenia gravis, a T cell-dependent autoimmune disease characterized by the presence of pathogenic autoantibodies specific for the nicotinic acetylcholine receptor. We report in this study a significant decrease in the in vitro suppressive function of peripheral Treg cells isolated from myasthenia patients in comparison to those from healthy donors. Interestingly, Treg cells from prednisolone-treated myasthenia gravis patients showed an improved suppressive function compared with untreated patients, suggesting that prednisolone may play a role in the control of the peripheral regulatory network. Indeed, prednisolone treatment prevents LPS-induced maturation of monocyte-derived dendritic cells by hampering the up-regulation of costimulatory molecules and by limiting secretion of IL-12 and IL-23, and enhancing IL-10. In addition, CD4(+) T cells cultured in the presence of such tolerogenic dendritic cells are hyporesponsive and can suppress autologous CD4(+) T cell proliferation. The results shown in this study indicate that prednisolone treatment promotes an environment that favors immune regulation rather than inflammation.