25 resultados para Caving mining
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE: Tumor stage and nuclear grade are the most important prognostic parameters of clear cell renal cell carcinoma (ccRCC). The progression risk of ccRCC remains difficult to predict particularly for tumors with organ-confined stage and intermediate differentiation grade. Elucidating molecular pathways deregulated in ccRCC may point to novel prognostic parameters that facilitate planning of therapeutic approaches. EXPERIMENTAL DESIGN: Using tissue microarrays, expression patterns of 15 different proteins were evaluated in over 800 ccRCC patients to analyze pathways reported to be physiologically controlled by the tumor suppressors von Hippel-Lindau protein and phosphatase and tensin homologue (PTEN). Tumor staging and grading were improved by performing variable selection using Cox regression and a recursive bootstrap elimination scheme. RESULTS: Patients with pT2 and pT3 tumors that were p27 and CAIX positive had a better outcome than those with all remaining marker combinations. A prolonged survival among patients with intermediate grade (grade 2) correlated with both nuclear p27 and cytoplasmic PTEN expression, as well as with inactive, nonphosphorylated ribosomal protein S6. By applying graphical log-linear modeling for over 700 ccRCC for which the molecular parameters were available, only a weak conditional dependence existed between the expression of p27, PTEN, CAIX, and p-S6, suggesting that the dysregulation of several independent pathways are crucial for tumor progression. CONCLUSIONS: The use of recursive bootstrap elimination, as well as graphical log-linear modeling for comprehensive tissue microarray (TMA) data analysis allows the unraveling of complex molecular contexts and may improve predictive evaluations for patients with advanced renal cancer.
Resumo:
We have sequenced the genome of Desulfosporosinus sp. OT, a Gram-positive, acidophilic sulfate-reducing Firmicute isolated from copper tailing sediment in the Norilsk mining-smelting area in Northern Siberia, Russia. This represents the first sequenced genome of a Desulfosporosinus species. The genome has a size of 5.7 Mb and encodes 6,222 putative proteins.
Resumo:
In 2009, the International Commission on Radiological Protection issued a statement on radon which stated that the dose conversion factor for radon progeny would likely double, and the calculation of risk from radon should move to a dosimetric approach, rather than the longstanding epidemiological approach. Through the World Nuclear Association, whose members represent over 90% of the world's uranium production, industry has been examining this issue with a goal of offering expertise and knowledge to assist with the practical implementation of these evolutionary changes to evaluating the risk from radon progeny. Industry supports the continuing use of the most current epidemiological data as a basis for risk calculation, but believes that further examination of these results is needed to better understand the level of conservatism in the potential epidemiological-based risk models. With regard to adoption of the dosimetric approach, industry believes that further work is needed before this is a practical option. In particular, this work should include a clear demonstration of the validation of the dosimetric model which includes how smoking is handled, the establishment of a practical measurement protocol, and the collection of relevant data for modern workplaces. Industry is actively working to address the latter two items.
Resumo:
The apicomplexan parasites Theileria annulata and Theileria parva cause severe lymphoproliferative disorders in cattle. Disease pathogenesis is linked to the ability of the parasite to transform the infected host cell (leukocyte) and induce uncontrolled proliferation. It is known that transformation involves parasite dependent perturbation of leukocyte signal transduction pathways that regulate apoptosis, division and gene expression, and there is evidence for the translocation of Theileria DNA binding proteins to the host cell nucleus. However, the parasite factors responsible for the inhibition of host cell apoptosis, or induction of host cell proliferation are unknown. The recent derivation of the complete genome sequence for both T. annulata and T. parva has provided a wealth of information that can be searched to identify molecules with the potential to subvert host cell regulatory pathways. This review summarizes current knowledge of the mechanisms used by Theileria parasites to transform the host cell, and highlights recent work that has mined the Theileria genomes to identify candidate manipulators of host cell phenotype.
Resumo:
Software repositories have been getting a lot of attention from researchers in recent years. In order to analyze software repositories, it is necessary to first extract raw data from the version control and problem tracking systems. This poses two challenges: (1) extraction requires a non-trivial effort, and (2) the results depend on the heuristics used during extraction. These challenges burden researchers that are new to the community and make it difficult to benchmark software repository mining since it is almost impossible to reproduce experiments done by another team. In this paper we present the TA-RE corpus. TA-RE collects extracted data from software repositories in order to build a collection of projects that will simplify extraction process. Additionally the collection can be used for benchmarking. As the first step we propose an exchange language capable of making sharing and reusing data as simple as possible.
Resumo:
Large amounts of animal health care data are present in veterinary electronic medical records (EMR) and they present an opportunity for companion animal disease surveillance. Veterinary patient records are largely in free-text without clinical coding or fixed vocabulary. Text-mining, a computer and information technology application, is needed to identify cases of interest and to add structure to the otherwise unstructured data. In this study EMR's were extracted from veterinary management programs of 12 participating veterinary practices and stored in a data warehouse. Using commercially available text-mining software (WordStat™), we developed a categorization dictionary that could be used to automatically classify and extract enteric syndrome cases from the warehoused electronic medical records. The diagnostic accuracy of the text-miner for retrieving cases of enteric syndrome was measured against human reviewers who independently categorized a random sample of 2500 cases as enteric syndrome positive or negative. Compared to the reviewers, the text-miner retrieved cases with enteric signs with a sensitivity of 87.6% (95%CI, 80.4-92.9%) and a specificity of 99.3% (95%CI, 98.9-99.6%). Automatic and accurate detection of enteric syndrome cases provides an opportunity for community surveillance of enteric pathogens in companion animals.
Resumo:
Detecting bugs as early as possible plays an important role in ensuring software quality before shipping. We argue that mining previous bug fixes can produce good knowledge about why bugs happen and how they are fixed. In this paper, we mine the change history of 717 open source projects to extract bug-fix patterns. We also manually inspect many of the bugs we found to get insights into the contexts and reasons behind those bugs. For instance, we found out that missing null checks and missing initializations are very recurrent and we believe that they can be automatically detected and fixed.
Resumo:
Dynamically typed languages lack information about the types of variables in the source code. Developers care about this information as it supports program comprehension. Ba- sic type inference techniques are helpful, but may yield many false positives or negatives. We propose to mine information from the software ecosys- tem on how frequently given types are inferred unambigu- ously to improve the quality of type inference for a single system. This paper presents an approach to augment existing type inference techniques by supplementing the informa- tion available in the source code of a project with data from other projects written in the same language. For all available projects, we track how often messages are sent to instance variables throughout the source code. Predictions for the type of a variable are made based on the messages sent to it. The evaluation of a proof-of-concept prototype shows that this approach works well for types that are sufficiently popular, like those from the standard librarie, and tends to create false positives for unpopular or domain specific types. The false positives are, in most cases, fairly easily identifiable. Also, the evaluation data shows a substantial increase in the number of correctly inferred types when compared to the non-augmented type inference.