10 resultados para Cattle Genetics
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Bacillus anthracis, the etiological agent of anthrax, manifests a particular bimodal lifestyle. This bacterial species alternates between short replication phases of 20-40 generations that strictly require infection of the host, normally causing death, interrupted by relatively long, mostly dormant phases as spores in the environment. Hence, the B. anthracis genome is highly homogeneous. This feature and the fact that strains from nearly all parts of the world have been analysed for canonical single nucleotide polymorphisms (canSNPs) and variable number tandem repeats (VNTRs) has allowed the development of molecular epidemiological and molecular clock models to estimate the age of major diversifications in the evolution of B. anthracis and to trace the global spread of this pathogen, which was mostly promoted by movement of domestic cattle with settlers and by international trade of contaminated animal products. From a taxonomic and phylogenetic point of view, B. anthracis is a member of the Bacillus cereus group. The differentiation of B. anthracis from B. cereus sensu strict, solely based on chromosomal markers, is difficult. However, differences in pathogenicity clearly differentiate B. anthracis from B. cereus and are marked by the strict presence of virulence genes located on the two virulence plasmids pXO1 and pXO2, which both are required by the bacterium to cause anthrax. Conversely, anthrax-like symptoms can also be caused by organisms with chromosomal features that are more closely related to B. cereus, but which carry these virulence genes on two plasmids that largely resemble the B. anthracis virulence plasmids. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We recently mapped the belt mutation in Brown Swiss cattle to a 922 kb interval on BTA3. In this study, we analysed two additional cattle breeds with the belted phenotype: Galloway and Dutch Belted (Lakenvelder). By genotyping microsatellites in solid-coloured and belted Galloways, we confirmed that the belt mutation in Galloways is strongly associated with the same chromosomal locus as in Brown Swiss cattle. Subsequently, we analysed 36 SNPs in the belt interval in three breeds. We identified a single belt-associated haplotype for each of the analysed breeds. The three breed-specific belt haplotypes share alleles in four blocks. Three of these blocks comprise only one single or two consecutive markers, while the largest shared haplotype block encompasses nine consecutive SNPs in a 336 kb interval. The large shared haplotype across divergent breeds suggests a common mutation for the belt phenotype in all three breeds. We identified a potential candidate gene within this interval coding for the developmental transcription factor HES6. We re-sequenced the complete HES6 coding sequence in belted and solid-coloured cattle but did not find belt-associated polymorphisms. In conclusion, our data provide strong evidence in favour of a common founder for the belt phenotype in different cattle breeds and have resulted in an improved fine-mapping of the causative mutation.
Resumo:
Effective population size is an important parameter for the assessment of genetic diversity within a livestock population and its development over time. If pedigree information is not available, linkage disequilibrium (LD) analysis might offer an alternative perspective for the estimation of effective population size. In this study, 128 individuals of the Swiss Eringer breed were genotyped using the Illumina BovineSNP50 beadchip. We set bin size at 50 kb for LD analysis, assuming that LD for proximal single nucleotide polymorphism (SNP)-pairs reflects distant breeding history while LD from distal SNP-pairs would reflect near history. Recombination rates varied among different regions of the genome. The use of physical distances as an approximation of genetic distances (e.g. setting 1 Mb = 0.01 Morgan) led to an upward bias in LD-based estimates of effective population size for generations beyond 50, while estimates for recent history were unaffected. Correction for restricted sample size did not substantially affect these results. LD-based actual effective population size was estimated in the range of 87-149, whereas pedigree-based effective population size resulted in 321 individuals. For conservation purposes, requiring knowledge of recent history (<50 generations), approximation assuming constant recombination rate seemed adequate.
Resumo:
BACKGROUND: Non-synonymous polymorphisms within the prion protein gene (PRNP) influence the susceptibility and incubation time for transmissible spongiform encephalopathies (TSE) in some species such as sheep and humans. In cattle, none of the known polymorphisms within the PRNP coding region has a major influence on susceptibility to bovine spongiform encephalopathy (BSE). Recently, however, we demonstrated an association between susceptibility to BSE and a 23 bp insertion/deletion (indel) polymorphism and a 12 bp indel polymorphism within the putative PRNP promoter region using 43 German BSE cases and 48 German control cattle. The objective of this study was to extend this work by including a larger number of BSE cases and control cattle of German and Swiss origin. RESULTS: Allele, genotype and haplotype frequencies of the two indel polymorphisms were determined in 449 BSE cattle and 431 unaffected cattle from Switzerland and Germany including all 43 German BSE and 16 German control animals from the original study. When breeds with similar allele and genotype distributions were compared, the 23 bp indel polymorphism again showed a significant association with susceptibility to BSE. However, some additional breed-specific allele and genotype distributions were identified, mainly related to the Brown breeds. CONCLUSION: Our study corroborated earlier findings that polymorphisms in the PRNP promoter region have an influence on susceptibility to BSE. However, breed-specific differences exist that need to be accounted for when analyzing such data.
Resumo:
BACKGROUND: Isolated syndactyly in cattle, also known as mulefoot, is inherited as an autosomal recessive trait with variable penetrance in different cattle breeds. Recently, two independent mutations in the bovine LRP4 gene have been reported as the primary cause of syndactyly in the Holstein and Angus cattle breeds. RESULTS: We confirmed the previously described LRP4 exon 33 two nucleotide substitution in most of the affected Holstein calves and revealed additional evidence for allelic heterogeneity by the identification of four new LRP4 non-synonymous point mutations co-segregating in Holstein, German Simmental and Simmental-Charolais families. CONCLUSION: We confirmed a significant role of LRP4 mutations in the pathogenesis of congenital syndactyly in cattle. The newly detected missense mutations in the LRP4 gene represent independent mutations affecting different conserved protein domains. However, the four newly described LRP4 mutations do still not explain all analyzed cases of syndactyly.
Resumo:
The white belt pattern of Brown Swiss cattle is characterized by a lack of melanocytes in a stretch of skin around the midsection. This pattern is of variable width and sometimes the belt does not fully circle the body. To identify the gene responsible for this colour variation, we performed linkage mapping of the belted locus using six segregating half-sib families including 104 informative meioses for the belted character. The pedigree confirmed a monogenic autosomal dominant inheritance of the belted phenotype in Brown Swiss cattle. We performed a genome scan using 186 microsatellite markers in a subset of 88 animals of the six families. Linkage with the belt phenotype was detected at the telomeric region of BTA3. Fine-mapping and haplotype analysis using 19 additional markers in this region refined the critical region of the belted locus to a 922-kb interval on BTA3. As the corresponding human and mouse chromosome segments contain no obvious candidate gene for this coat colour trait, the mutation causing the belt pattern in the Brown Swiss cattle might help to identify an unknown gene influencing skin pigmentation.
Resumo:
The major bovine whey proteins, α-lactalbumin (α-LA) and β-lactoglobulin (β-LG), exhibit breed-specific genetic variation. The aim of this study was to identify possible new protein variants and determine the distribution of variants across a variety of 18 taurine and indicine cattle breeds applying a DNA-based sequencing approach. To this end, the open reading frames of the respective genes (LALBA and LGB) were sequenced in 476 animals. Within the LALBA gene, a previously unknown synonymous and a previously undesignated non-synonymous nucleotide exchange were identified. Furthermore, two known α-LA variants (A and B) and four known β-LG variants (A, B, C and W) were determined. The occurrence of typical indicine variants in some taurine cattle breeds, such as Suisse Eringer, German Hinterwälder and Hungarian Grey Steppe, further supports the hypothesis of ancient Bos indicus introgression into (peri-)alpine cattle breeds.
Resumo:
Four related cows showed hairless streaks on various parts of the body with no correlation to the pigmentation pattern. The stripes occurred in a consistent pattern resembling the lines of Blaschko. The non-syndromic hairlessness phenotype observed occurred across three generations of a single family and was compatible with an X-linked mode of inheritance. Linkage analysis and subsequent whole genome sequencing of one affected female identified two perfectly associated non-synonymous sequence variants in the critical interval on bovine chromosome X. Both variants occurred in complete linkage disequilibrium and were absent in more than 3900 controls. An ERCC6L missense mutation was predicted to cause an amino acid substitution of a non-conserved residue. Analysis in mice showed no specific Ercc6l expression pattern related to hair follicle development and therefore ERCC6L was not considered as causative gene. A point mutation at the 5'-splice junction of exon 5 of the TSR2, 20S rRNA accumulation, homolog (S. cerevisiae), gene led to the production of two mutant transcripts, both of which contain a frameshift and generate a premature stop codon predicted to truncate approximately 25% of the protein. Interestingly, in addition to the presence of both physiological TSR2 transcripts, the two mutant transcripts were predominantly detected in the hairless skin of the affected cows. Immunohistochemistry, using an antibody against the N-terminal part of the bovine protein demonstrated the specific expression of the TSR2 protein in the skin and the hair of the affected and the control cows as well as in bovine fetal skin and hair. The RNA hybridization in situ showed that Tsr2 was expressed in pre- and post-natal phases of hair follicle development in mice. Mammalian TSR2 proteins are highly conserved and are known to be broadly expressed, but their precise in vivo functions are poorly understood. Thus, by dissecting a naturally occurring mutation in a domestic animal species, we identified TSR2 as a regulator of hair follicle development.
Resumo:
Cholesterol deficiency, a new autosomal recessive inherited genetic defect in Holstein cattle, has been recently reported to have an influence on the rearing success of calves. The affected animals show unresponsive diarrhea accompanied by hypocholesterolemia and usually die within the first weeks or months of life. Here, we show that whole genome sequencing combined with the knowledge about the pedigree and inbreeding status of a livestock population facilitates the identification of the causative mutation. We resequenced the entire genomes of an affected calf and a healthy partially inbred male carrying one copy of the critical 2.24-Mb chromosome 11 segment in its ancestral state and one copy of the same segment with the cholesterol deficiency mutation. We detected a single structural variant, homozygous in the affected case and heterozygous in the non-affected carrier male. The genetic makeup of this key animal provides extremely strong support for the causality of this mutation. The mutation represents a 1.3kb insertion of a transposable LTR element (ERV2-1) in the coding sequence of the APOB gene, which leads to truncated transcripts and aberrant splicing. This finding was further supported by RNA sequencing of the liver transcriptome of an affected calf. The encoded apolipoprotein B is an essential apolipoprotein on chylomicrons and low-density lipoproteins, and therefore, the mutation represents a loss of function mutation similar to autosomal recessive inherited familial hypobetalipoproteinemia-1 (FHBL1) in humans. Our findings provide a direct gene test to improve selection against this deleterious mutation in Holstein cattle.