11 resultados para Catastrophes (Geology)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments. We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost), solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude), and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.
Resumo:
Using a chain of urns, we build a Bayesian nonparametric alarm system to predict catastrophic events, such as epidemics, black outs, etc. Differently from other alarm systems in the literature, our model is constantly updated on the basis of the available information, according to the Bayesian paradigm. The papers contains both theoretical and empirical results. In particular, we test our alarm system on a well-known time series of sunspots.
Resumo:
When determining risk related to natural hazard processes, many studies neglect the investigations of the damage potential or are limited to the assessment of immobile values like buildings. However, persons as well as mobile values form an essential part of the damage potential. Knowledge of the maximum number of exposed persons in an endangered area is of great importance for elaborating evacuation plans and immediate measures in case of catastrophes. In addition, motor vehicles can also be highly damaged, as was shown by the analysis of avalanche events. With the removal of mobile values in time as a preventive measure this kind of damage can be minimised. This study presents a method for recording the maximum number of exposed persons and monetarily assessing motor vehicles in the municipality of Galt¨ur (Tyrol, Austria). Moreover, general developments of the damage potential due to significant socio-economic changes since the mid-twentieth century are pointed out in the study area. The present situation of the maximum number of persons and mobile values in the official avalanche hazard zones of the municipality is described in detail. Information on the number of persons is derived of census data, tourism and employment statistics. During the winter months, a significant increase overlaid by strong short-term fluctuation in the number of persons can be noted. These changes result from a higher demand of tourism related manpower as well as from varying occupancy rates. The number of motor vehicles in endangered areas is closely associated to the number of exposed persons. The potential number of motor vehicles is investigated by means of mapping, statistics on the stock of motor vehicles and the density distribution. Diurnal and seasonal fluctuations of the investigated damage potential are pointed out. The recording of the number of persons and mobile values in endangered areas is vital for any disaster management.
Resumo:
A great number of debris flows occurred during the flood catastrophes of the summer of 1987 in the Swiss Alps. Aerial photography, field investigations and eyewitness accounts documented and analysed the events. As an example of the reconstructed major events, the large debris flow in the Varuna valley involved an estimated peak discharge between 400 and 800 m3/s and an event magnitude of 200,000 m3. Several single pulses were observed; the duration of each of them appeared to be not more than a few minutes. Apart from incision into weak bedrock, the maximum erosion depth seemed to depend on the channel gradient. Based on approximately 600 events, typical starting zones and rainfall conditions are discussed with regard to the triggering conditions. Existing and new empirical formulae are proposed to estimate the most important flow parameters. These values are compared to debris flow data from Canada and Japan.