51 resultados para Carrier-envelope phases

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Krebs cycle is of fundamental importance for the generation of the energetic and molecular needs of both prokaryotic and eukaryotic cells. Both enantiomers of metabolite 2-hydroxyglutarate are directly linked to this pivotal biochemical pathway and are found elevated not only in several cancers, but also in different variants of the neurometabolic disease 2-hydroxyglutaric aciduria. Recently we showed that cancer-associated IDH2 germline mutations cause one variant of 2-hydroxyglutaric aciduria. Complementary to these findings, we now report recessive mutations in SLC25A1, the mitochondrial citrate carrier, in 12 out of 12 individuals with combined D-2- and L-2-hydroxyglutaric aciduria. Impaired mitochondrial citrate efflux, demonstrated by stable isotope labeling experiments and the absence of SLC25A1 in fibroblasts harboring certain mutations, suggest that SLC25A1 deficiency is pathogenic. Our results identify defects in SLC25A1 as a cause of combined D-2- and L-2-hydroxyglutaric aciduria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The envelope glycoprotein of small ruminant lentiviruses (SRLV) is a major target of the humoral immune response and contains several linear B-cell epitopes. We amplified and sequenced the genomic segment encoding the SU5 antigenic site of the envelope glycoprotein of several SRLV field isolates. With synthetic peptides based on the deduced amino acid sequences of SU5 in an enzyme-linked immunosorbent assay (ELISA), we have (i) proved the immunodominance of this region regardless of its high variability, (ii) defined the epitopes encompassed by SU5, (iii) illustrated the rapid and peculiar kinetics of seroconversion to this antigenic site, and (iv) shown the rapid and strong maturation of the avidity of the anti-SU5 antibody. Finally, we demonstrated the modular diagnostic potential of SU5 peptides. Under Swiss field conditions, the SU5 ELISA was shown to detect the majority of infected animals and, when applied in a molecular epidemiological context, to permit rapid phylogenetic classification of the infecting virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focusing of four hemoglobins with concurrent electrophoretic mobilization was studied by computer simulation. A dynamic electrophoresis simulator was first used to provide a detailed description of focusing in a 100-carrier component, pH 6-8 gradient using phosphoric acid as anolyte and NaOH as catholyte. These results are compared to an identical simulation except that the catholyte contained both NaOH and NaCl. A stationary, steady-state distribution of carrier components and hemoglobins is produced in the first configuration. In the second, the chloride ion migrates into and through the separation space. It is shown that even under these conditions of chloride ion flux a pH gradient forms. All amphoteric species acquire a slight positive charge upon focusing and the whole pattern is mobilized towards the cathode. The cathodic gradient end is stable whereas the anodic end is gradually degrading due to the continuous accumulation of chloride. The data illustrate that the mobilization is a cationic isotachophoretic process with the sodium ion being the leading cation. The peak height of the hemoglobin zones decreases somewhat upon mobilization, but the zones retain a relatively sharp profile, thus facilitating detection. The electropherograms that would be produced by whole column imaging and by a single detector placed at different locations along the focusing column are presented and show that focusing can be commenced with NaCl present in the catholyte at the beginning of the experiment. However, this may require detector placement on the cathodic side of the catholyte/sample mixture interface.