3 resultados para Cariogenic
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Glycan-binding specificities of Streptococcus mutans and Streptococcus sobrinus lectin-like adhesins
Resumo:
Since the adhesion of bacteria to the tooth surface is a prerequisite for dental plaque and subsequent caries development, a promising caries preventive strategy could be to block the lectin-glycan-mediated adherence of cariogenic bacteria. The aim of the study was to evaluate potential differences in glycan-binding specificities of two Streptococcus mutans strains (DSM 20523 and DSM 6178) and Streptococcus sobrinus (DSM 20381). A competitive enzyme-linked lectin-binding assay was used to identify the binding specificities of isolated bacterial surface lectins. Blotting of the microbial proteins on neoglycoprotein-coated PVP membranes enabled a qualitative protein analysis of all specific bacterial lectins. Different glycan-binding sites could be identified for the S. mutans strains in comparison to S. sobrinus. An earlier reported glycan-binding specificity for terminal galactose residues could be confirmed for the S. mutans strains. For the S. sobrinus strain, more than one glycan-binding specificity could be found (oligomannose and terminal sialyl residues). Each of the tested strains showed more than one surface lectin responsible for the specific lectin-binding with varying molecular weight (S. mutans, 90/155 kDa and S. sobrinus, 35/45 kDa). The established experimental setup could be used as future standard procedure for the identification of bacterial lectin-derived binding specificities. The findings from this study might serve as basis for the design of an individual 'glycan cocktail' for the competitive inhibition of lectin-mediated adhesion of mutans streptococci to oral surfaces.
Resumo:
Although there has been a significant decrease in caries prevalence in developed countries, the slower progression of dental caries requires methods capable of detecting and quantifying lesions at an early stage. The aim of this study was to evaluate the effectiveness of fluorescence-based methods (DIAGNOdent 2095 laser fluorescence device [LF], DIAGNOdent 2190 pen [LFpen], and VistaProof fluorescence camera [FC]) in monitoring the progression of noncavitated caries-like lesions on smooth surfaces. Caries-like lesions were developed in 60 blocks of bovine enamel using a bacterial model of Streptococcus mutans and Lactobacillus acidophilus . Enamel blocks were evaluated by two independent examiners at baseline (phase I), after the first cariogenic challenge (eight days) (phase II), and after the second cariogenic challenge (a further eight days) (phase III) by two independent examiners using the LF, LFpen, and FC. Blocks were submitted to surface microhardness (SMH) and cross-sectional microhardness analyses. The intraclass correlation coefficient for intra- and interexaminer reproducibility ranged from 0.49 (FC) to 0.94 (LF/LFpen). SMH values decreased and fluorescence values increased significantly among the three phases. Higher values for sensitivity, specificity, and area under the receiver operating characteristic curve were observed for FC (phase II) and LFpen (phase III). A significant correlation was found between fluorescence values and SMH in all phases and integrated loss of surface hardness (ΔKHN) in phase III. In conclusion, fluorescence-based methods were effective in monitoring noncavitated caries-like lesions on smooth surfaces, with moderate correlation with SMH, allowing differentiation between sound and demineralized enamel.
Resumo:
The aim of this study was to compare different bacterial models for in vitro induction of non-cavitated enamel caries-like lesions by microhardness and polarized light microscopy analyses. One hundred blocks of bovine enamel were randomly divided into four groups (n = 25) according to the bacterial model for caries induction: (A) Streptococcus mutans, (B) S. mutans and Lactobacillus acidophilus, (C) S. mutans and L. casei, and (D) S. mutans, L. acidophilus, and L. casei. Within each group, the blocks were randomly divided into five subgroups according to the duration of the period of caries induction (4-20 days). The enamel blocks were immersed in cariogenic solution containing the microorganisms, which was changed every 48 h. Groups C and D presented lower surface hardness values (SMH) and higher area of hardness loss (ΔS) after the cariogenic challenge than groups A and B (P < 0.05). As regards lesion depth, under polarized light microscopy, group A presented significantly lower values, and groups C and D the highest values. Group B showed a higher value than group A (P < 0.05). Groups A and B exhibited subsurface caries lesions after all treatment durations, while groups C and D presented erosion-type lesions with surface softening. The model using S. mutans, whether or not it was associated with L. acidophilus, was less aggressive and may be used for the induction of non-cavitated enamel caries-like lesions. The optimal period for inducing caries-like lesions was 8 days.