7 resultados para Carbon And Oxygen Isotopes

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In equatorial regions, where tree rings are less distinct or even absent, the response of forests to high-frequency climate variability is poorly understood. We measured stable carbon and oxygen isotopes in anatomically distinct, annual growth rings of four Pericopsis elata trees from a plantation in the Congo Basin, to assess their sensitivity to recorded changes in precipitation over the last 50 y. Our results suggest that oxygen isotopes have high common signal strength (EPS = 0.74), and respond to multi-annual precipitation variability at the regional scale, with low δ18O values (28–29‰) during wetter conditions (1960–1970). Conversely, δ13C are mostly related to growth variation, which in a light-demanding species are driven by competition for light. Differences in δ13C values between fast- and slow-growing trees (c. 2‰), result in low common signal strength (EPS = 0.37) and are driven by micro-site conditions rather than by climate. This study highlights the potential for understanding the causes of growth variation in P. elata as well as past hydroclimatic changes, in a climatically complex region characterized by a bimodal distribution in precipitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explored the extent to which δ13C and δD values of freshwater bryozoan statoblasts can provide information about the isotopic composition of zooids, bryozoan food and surrounding water. Bryozoan samples were collected from 23 sites and encompassed ranges of nearly 30‰ for δ13C and 100‰ for δD values. δ13C offsets between zooids and statoblasts generally ranged from −3 to +4.5‰, with larger offsets observed in four samples. However, a laboratory study with Plumatella emarginata and Lophopus crystallinus demonstrated that, in controlled settings, zooids had only 0–1.2‰ higher δ13C values than statoblasts, and 1.7‰ higher values than their food. At our field sites, we observed a strong positive correlation between median δ13C values of zooids and median δ13C values of corresponding statoblasts. We also observed a positive correlation between median δD values of zooids and statoblasts for Plumatella, and a positive correlation between median δD values of statoblasts and δD values of lake water for Plumatella and when all bryozoan taxa were examined together. Our results suggest that isotope measurements on statoblasts collected from flotsam or sediment samples can provide information on the feeding ecology of bryozoans and the H isotopic composition of lake water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Keywords High-pressure fluids · Whiteschists · U–Pb dating · Oxygen isotopes · Ion microprobe · Metasomatism Introduction The subduction of crustal material to mantle depths and its chemical modification during burial and exhumation contribute to element recycling in the mantle and the formation of new crust through arc magmatism. Crustal rocks that Abstract The Dora-Maira whiteschists derive from metasomatically altered granites that experienced ultrahighpressure metamorphism at ~750 °C and 40 kbar during the Alpine orogeny. In order to investigate the P–T–time– fluid evolution of the whiteschists, we obtained U–Pb ages from zircon and monazite and combined those with trace element composition and oxygen isotopes of the accessory minerals and coexisting garnet. Zircon cores are the only remnants of the granitic protolith and still preserve a Permian age, magmatic trace element compositions and δ18O of ~10 ‰. Thermodynamic modelling of Si-rich and Si-poor whiteschist compositions shows that there are two main fluid pulses during prograde subduction between 20 and 40 kbar. In Si-poor samples, the breakdown of chlorite to garnet + fluid occurs at ~22 kbar. A first zircon rim directly overgrowing the cores has inclusions of prograde phlogopite and HREE-enriched patterns indicating zircon growth at the onset of garnet formation. A second main fluid pulse is documented close to peak metamorphic conditions in both Si-rich and Si-poor whiteschist when talc + kyanite react to garnet + coesite + fluid. A second metamorphic overgrowth on zircon with HREE depletion was observed in the Si-poor whiteschists, whereas a single metamorphic overgrowth capturing phengite and talc inclusions was observed in the Si-rich whiteschists. Garnet rims, zircon rims and monazite are in chemical and isotopic equilibrium for oxygen, demonstrating that they all formed at peak metamorphism at 35 Ma as constrained by the age of monazite (34.7 ± 0.4 Ma) and zircon rims (35.1 ± 0.8 Ma). The prograde zircon rim in Si-poor whiteschists has an age that is within error indistinguishable from the age of peak metamorphic conditions, consistent with a minimum rate of subduction of 2 cm/year for the Dora-Maira unit. Oxygen isotope values for zircon rims, monazite and garnet are equal within error at 6.4 ± 0.4 ‰, which is in line with closed-system equilibrium fractionation during prograde to peak temperatures. The resulting equilibrium Δ18Ozircon-monazite at 700 ± 20 °C is 0.1 ± 0.7 ‰. The in situ oxygen isotope data argue against an externally derived input of fluids into the whiteschists. Instead, fluidassisted zircon and monazite recrystallisation can be linked to internal dehydration reactions during prograde subduction. We propose that the major metasomatic event affecting the granite protolith was related to hydrothermal seafloor alteration post-dating Jurassic rifting, well before the onset of Alpine subduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technological development is described through which the stable carbon-, oxygen-, and nonexchangeable hydrogen-isotopic ratios (δ13C,δ18O,δ2H) are determined on a single carbohydrate (cellulose) sample with precision equivalent to conventional techniques (δ13 C 0.15‰,δ18O 0.30‰,δ2H 3.0‰). This triple-isotope approach offers significant new research opportunities, most notably in physiology and medicine, isotope biogeochem- istry, forensic science, and palaeoclimatology, when isotopic analysis of a common sample is desirable or when sample material is limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ratio of oxygen isotopes is a temperature proxy both in precipitation and in the calcite of lacustrine sediments. The very similar oxygen-isotope records from Greenland ice cores and European lake sediments during the Last Glacial Termination suggest that the drastic climatic changes occurred quasi-simultaneously on an extra-regional, probably hemispheric scale. In order to study temporal relations of the different parameters recorded in lake sediments, for example biotic response times to rapid climatic changes, a precise chronology is required. In unlaminated lake sediments there is not yet available a method to provide a high-resolution chronology, especially for periods with radiocarbon plateaux. Alternatively, an indirect time scale can be constructed by linking the lake stratigraphy with other well-dated climate records. New oxygen-isotope records from Gerzensee and Leysin, with an estimated sampling resolution of between 15 and 40 years, match the Greenlandic isotope record in many details. Under the assumption that the main variations in temperature and thus in oxygen isotopes occurred about simultaneously in Greenland and Switzerland, we have assigned a time scale to the lake sediments of Gerzensee and Leysin by wiggle-matching their stable-isotope records with those of Greenland ice cores, which are among the best dated climatic archives. We estimate a precision of 20 to 100 years during the Last Glacial Termination.