5 resultados para Captive wild cats
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Feline tooth resorption has been widely reported in domestic cats and sporadically described in other felidae. The goal of the present study was to determine the prevalence of tooth resorption and to report other dental problems in a population of wild felidae. Observations of dental disorders and anomalies were made in skulls from 73 wild felidae (cheetahs, leopards, caracals, African wildcats, and lions) originating from Namibia. In addition, radiographs were taken in 43 cases to determine signs of bone and root pathology. Radiographs showed varying stages of tooth resorption in 16.0% of the specimens. Other dental anomalies found included fused teeth, supernumerary roots, or missing teeth. The prevalence of dental resorption in wild felidae was lower than reported in the domestic cat.
Resumo:
This report describes 4 patients presenting with multiple teeth affected by invasive cervical resorption (ICR). The cases came to our attention between 2006 and 2008; previously, no cases of multiple ICR (mICR) had been reported in Switzerland. Characteristics common to all 4 cases included progression of disease over time, similar clinical and radiographic appearance of lesions, and obscure etiology. The histologically assessed teeth showed a similar pattern of tooth destruction, with resorptive lesions being confined to the cervical region. Howship's lacunae and multinucleated, tartrate-resistant acid phosphatase-positive odontoclasts were detected. None of the teeth presented with internal resorption. The positive pulp sensitivity corresponded to the histologic findings, indicating that the pulp tissue resisted degradation even in advanced stages of resorptive lesions. Although mICR is rare in humans, a similar disease known as feline odontoclastic resorptive lesions (FORL) is common in domestic, captive, and wild cats. The etiology of FORL, like that of mICR, remains largely unknown. Because FORL has been associated with feline viruses, we asked our mICR patients whether they had had contact with cats, and interestingly, all patients reported having had direct (2 cases) or indirect (2 cases) contact. In addition, blood samples were taken from all patients for neutralization testing of feline herpes virus type 1 (FeHV-1). Indeed, the sera obtained were able to neutralize (2 cases) or partly inhibit (2 cases) replication of FeHV-1, indicating transmission of feline viruses to humans. Future studies on mICR (and FORL) should evaluate the possible role of a (feline) virus as an etiologic (co-)factor in this disease.
Resumo:
Releasing captive-bred fish into natural environments (stocking) is common in fisheries worldwide. Although stocking is believed to have a positive effect on fish abundance over the short term, little is known about the long-term consequences of recurrent stocking and its influence on natural populations. In fact, there are growing concerns that genetically maladapted captive-bred fish can eventually reduce the abundance of natural population. In this study, we develop a simple model to quantitatively investigate the condition under which recurrent stocking has long-term effects on the natural population. Using a population dynamics model that takes into account a density-dependent recruitment, a gene responsible for the fitness difference between wild and captive-bred fish, and hybridization between them, we show that there is little or no contribution of recurrent stocking to the stock enhancement without a replacement of the wild gene pool by the captive-bred gene pool. The model further predicted that stocking of an intermediate level causes a reduction, rather than enhancement, of population size over the long term. The population decline due to stocking was attributed to the fitness disadvantage of captive-bred fish and strong overcompensation at recruitment stage. These results suggest that it would be difficult to simultaneously attain population size recovery and conservation of the local gene pool when captive-bred fish have fitness disadvantage in the wild, although caution is needed when applying the predictions from the simplified model to a specific species or population.
Resumo:
While hemoplasma infections in domestic cats are well studied, almost no information is available on their occurrence in wild felids. The aims of the present study were to investigate wild felid species as possible reservoirs of feline hemoplasmas and the molecular characterization of the hemoplasma isolates. Blood samples from the following 257 wild felids were analyzed: 35 Iberian lynxes from Spain, 36 Eurasian lynxes from Switzerland, 31 European wildcats from France, 45 lions from Tanzania, and 110 Brazilian wild felids, including 12 wild felid species kept in zoos and one free-ranging ocelot. Using real-time PCR, feline hemoplasmas were detected in samples of the following species: Iberian lynx, Eurasian lynx, European wildcat, lion, puma, oncilla, Geoffroy's cat, margay, and ocelot. "Candidatus Mycoplasma haemominutum" was the most common feline hemoplasma in Iberian lynxes, Eurasian lynxes, Serengeti lions, and Brazilian wild felids, whereas "Candidatus Mycoplasma turicensis" was the most prevalent in European wildcats; hemoplasma coinfections were frequently observed. Hemoplasma infection was associated with species and free-ranging status of the felids in all animals and with feline leukemia virus provirus-positive status in European wildcats. Phylogenetic analyses of the 16S rRNA and the partial RNase P gene revealed that most hemoplasma isolates exhibit high sequence identities to domestic cat-derived isolates, although some isolates form different subclusters within the phylogenetic tree. In conclusion, 9 out of 15 wild felid species from three different continents were found to be infected with feline hemoplasmas. The effect of feline hemoplasma infections on wild felid populations needs to be further investigated.
Resumo:
Following field observations of wild Agassiz's desert tortoises (Gopherus agassizii) with oral lesions similar to those seen in captive tortoises with herpesvirus infection, we measured the prevalence of antibodies to Testudinid herpesvirus (TeHV) 3 in wild populations of desert tortoises in California. The survey revealed 30.9% antibody prevalence. In 2009 and 2010, two wild adult male desert tortoises, with gross lesions consistent with trauma and puncture wounds, respectively, were necropsied. Tortoise 1 was from the central Mojave Desert and tortoise 2 was from the northeastern Mojave Desert. We extracted DNA from the tongue of tortoise 1 and from the tongue and nasal mucosa of tortoise 2. Sequencing of polymerase chain reaction products of the herpesviral DNA-dependent DNA polymerase gene and the UL39 gene respectively showed 100% nucleotide identity with TeHV2, which was previously detected in an ill captive desert tortoise in California. Although several cases of herpesvirus infection have been described in captive desert tortoises, our findings represent the first conclusive molecular evidence of TeHV2 infection in wild desert tortoises. The serologic findings support cross-reactivity between TeHV2 and TeHV3. Further studies to determine the ecology, prevalence, and clinical significance of this virus in tortoise populations are needed.