9 resultados para Capacity expansion planning
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this study, we investigated if monolayer expansion of adult human articular chondrocytes (AHAC) on specific substrates regulates cell phenotype and post-expansion multilineage differentiation ability. AHAC isolated from cartilage biopsies of five donors were expanded on plastic dishes (PL), on dishes coated with collagen type II (COL), or on slides coated with a ceramic material (Osteologic, OS). The phenotype of expanded chondrocytes was assessed by flow cytometry and real-time RT-PCR. Cells were then cultured in previously established conditions promoting differentiation toward the chondrogenic or osteogenic lineage. AHAC differentiation was assessed histologically, biochemically, and by real-time RT-PCR. As compared to PL-expanded AHAC, those expanded on COL did not exhibit major phenotypic changes, whereas OS-expanded cells expressed (i) higher bone sialoprotein (BSP) (22.6-fold) and lower collagen type II (9.3-fold) mRNA levels, and (ii) lower CD26, CD90 and CD140 surface protein levels (1.4-11.1-fold). Following chondrogenic differentiation, COL-expanded AHAC expressed higher mRNA levels of collagen type II (2.3-fold) and formed tissues with higher glycosaminoglycan (GAG) contents (1.7-fold), whereas OS-expanded cells expressed 16.5-fold lower collagen type II and generated pellets with 2.0-fold lower GAG contents. Following osteogenic differentiation, OS-expanded cells expressed higher levels of BSP (3.9-fold) and collagen type I (2.8-fold) mRNA. In summary, AHAC expansion on COL or OS modulated the de-differentiated cell phenotype and improved the cell differentiation capacity respectively toward the chondrogenic or osteogenic lineage. Phenotypic changes induced by AHAC expansion on specific substrates may mimic pathophysiological events occurring at different stages of osteoarthritis and may be relevant for the engineering of osteochondral tissues.
Resumo:
Healthcare professionals and the public have increasing concerns about the ability of emergency departments to meet current demands. Increased demand for emergency services, mainly caused by a growing number of minor and moderate injuries has reached crisis proportions, especially in the United Kingdom. Numerous efforts have been made to explore the complex causes because it is becoming more and more important to provide adequate healthcare within tight budgets. Optimisation of patient pathways in the emergency department is therefore an important factor. This paper explores the possibilities offered by dynamic simulation tools to improve patient pathways using the emergency department of a busy university teaching hospital in Switzerland as an example.
Resumo:
CONCLUSION: Our self-developed planning and navigation system has proven its capacity for accurate surgery on the anterior and lateral skull base. With the incorporation of augmented reality, image-guided surgery will evolve into 'information-guided surgery'. OBJECTIVE: Microscopic or endoscopic skull base surgery is technically demanding and its outcome has a great impact on a patient's quality of life. The goal of the project was aimed at developing and evaluating enabling navigation surgery tools for simulation, planning, training, education, and performance. This clinically applied technological research was complemented by a series of patients (n=406) who were treated by anterior and lateral skull base procedures between 1997 and 2006. MATERIALS AND METHODS: Optical tracking technology was used for positional sensing of instruments. A newly designed dynamic reference base with specific registration techniques using fine needle pointer or ultrasound enables the surgeon to work with a target error of < 1 mm. An automatic registration assessment method, which provides the user with a color-coded fused representation of CT and MR images, indicates to the surgeon the location and extent of registration (in)accuracy. Integration of a small tracker camera mounted directly on the microscope permits an advantageous ergonomic way of working in the operating room. Additionally, guidance information (augmented reality) from multimodal datasets (CT, MRI, angiography) can be overlaid directly onto the surgical microscope view. The virtual simulator as a training tool in endonasal and otological skull base surgery provides an understanding of the anatomy as well as preoperative practice using real patient data. RESULTS: Using our navigation system, no major complications occurred in spite of the fact that the series included difficult skull base procedures. An improved quality in the surgical outcome was identified compared with our control group without navigation and compared with the literature. The surgical time consumption was reduced and more minimally invasive approaches were possible. According to the participants' questionnaires, the educational effect of the virtual simulator in our residency program received a high ranking.
Resumo:
For cell-based cartilage repair strategies, an ex vivo expansion phase is required to obtain sufficient numbers of cells needed for therapy. Although recent reports demonstrated the central role of oxygen for the function and differentiation of chondrocytes, a beneficial effect of low oxygen concentrations during the expansion of the cells to further improve their chondrogenic capacity has not been investigated.Therefore, freshly harvested bovine articular chondrocytes were grown in two-dimensional monolayer cultures at 1.5% and 21% O2 and redifferentiation was subsequently induced in three-dimensional micromass cultures at 1.5%, 5%, and 21% O2. Cells expanded at 1.5% O2 were characterized by low citrate synthase (aerobic energy metabolism)--and high LDH (anaerobic energy metabolism-activities,suggesting an anaerobic energy metabolism. Collagen type II mRNA was twofold higher in cells expanded at 1.5% as compared to expansion at 21% O2. Micromass cultures grown at 21% O2 showed up to a twofold increase in the tissue content of glycosaminoglycans when formed with cells expanded at 1.5% instead of 21% O2. However, no differences in the levels of transcripts and in the staining for collagen type II protein were observed in these micromass cultures. Hypoxia (1.5% and 5% O2) applied during micromass cultures gave rise to tissues with low contents of glycosaminoglycans only. In vivo, the chondrocytes are adapted to a hypoxic environment. Taking this into account, by applying 1.5% O2 in the expansion phase in the course of cell-based cartilage repair strategies, may result in a repair tissue with higher quality by increasing the content of glycosaminoglycans.
Resumo:
BACKGROUND: Newborns with hypoplastic left heart syndrome (HLHS) or right heart syndrome or other malformations with a single ventricle physiology and associated hypoplasia of the great arteries continue to be a challenge in terms of survival. The vast majority of these forms of congenital heart defects relate to abnormal morphogenesis during early intrauterine development and can be diagnosed accurately by fetal echocardiography. Early knowledge of these conditions not only permits a better understanding of the progression of these malformations but encourages some researchers to explore new minimally invasive therapeutic options with a view to early pre- and postnatal cardiac palliation. DATA SOURCES: PubMed database was searched with terms of "congenital heart defects", "fetal echocardiography" and "neonatal cardiac surgery". RESULTS: At present, early prenatal detection has been applied for monitoring pregnancy to avoid intrauterine cardiac decompensation. In principle, the majority of congenital heart defects can be diagnosed by prenatal echocardiography and the detection rate is 85%-95% at tertiary perinatal centers. The majority, particularly of complex congenital lesions, show a steadily progressive course including subsequent secondary phenomena such as arrhythmias or myocardial insufficiency. So prenatal treatment of an abnormal fetus is an area of perinatal medicine that is undergoing a very dynamic development. Early postnatal treatment is established for some time, and prenatal intervention or palliation is at its best experimental stage in individual cases. CONCLUSION: The upcoming expansion of fetal cardiac intervention to ameliorate critically progressive fetal lesions intensifies the need to address issues about the adequacy of technological assessment and patient selection as well as the morbidity of those who undergo these procedures.
Resumo:
Fragmentation and vegetative regeneration from small fragments may contribute to population expansion, dispersal and establishment of new populations of introduced plants. However, no study has systematically tested whether a high capacity of vegetative regeneration is associated with a high degree of invasiveness. For small single-node fragments, the presence of internodes may increase regeneration capacity because internodes may store carbohydrates and proteins that can be used for regeneration. We conducted an experiment with 39 stoloniferous plant species to examine the regeneration capacity of small, single-node fragments with or without attached stolon internodes. We asked (1) whether the presence of stolon internodes increases regeneration from single-node fragments, (2) whether regeneration capacity differs between native and introduced species in China, and (3) whether regeneration capacity is positively associated with plant invasiveness at a regional scale (within China) and at a global scale. Most species could regenerate from single-node fragments, and the presence of internodes increased regeneration rate and subsequent growth and/or asexual reproduction. Regeneration capacity varied greatly among species, but showed no relationship to invasiveness, either in China or globally. High regeneration capacity from small fragments may contribute to performance of clonal plants in general, but it does not appear to explain differences in invasiveness among stoloniferous clonal species
Resumo:
SDC has been involved in rural development in Cabo Delgado for more than 30 years. Shortly after the independence of Mozambique, projects in water supply and integrated rural development were initiated. The silvoagropastoral project FO9 based in Mueda was a very early experience in forestry in Cabo Delgado. Andreas Kläy was responsible for the forestry sector in FO9 for 3 years in the early 1980s and had an opportunity to initiate an exchange of ideas and experience in rural development theory and approaches with Yussuf Adam, who was doing research in human anthropology and history in the province. 25 years later, the current situation of forest management in Cabo Delgado was reassessed, with a specific focus on concessions in the North. The opportunity for a partnership between the MITI SA, the University of Eduardo Mondlane, and CDE was created on the basis of this preliminary study1. The aim of this partnership is to generate knowledge and develop capacity for sustainable forest management. The preliminary study showed that “…we have to face weaknesses and would like to start a learning process with the main institutions, organisations, and stakeholder groups active in forest management and research in the North of Cabo Delgado. This learning process will involve studies supported by competent research institutions and workshops …” The specific objectives of ESAPP project Q804 are the following: 1. Contribute to understanding of the forestry sector; 2. Capacity development for professionals and academics; 3. Support for the private sector and the local forest service; 4. Support data generation at Cabo Delgado's Provincial Service; 5. Capacity development for Swiss academic institutions (CDE and ETHZ). A conceptual planning platform was elaborated as a basis for cooperation and research in the partnership (cf. Annex 1). The partners agreed to work on two lines of research: biophysical and socio-economic. In order to ensure a transdisciplinary approach, disciplinary research is anchored in common understanding in workshops based on the LforS methods. These workshops integrate the main stakeholders in the local context of the COMADEL concession in Nangade District managed by MITI SA, and take place in the village of Namiune. The research team observed that current management schemes consist mainly of strategies of nature mining by most stakeholders involved. Institutional settings - formal and informal - have little impact due to weak capacity at the local level and corruption. Local difficulties in a remote rural area facilitate external access to resources and are perpetuated by the loss of benefits. The benefits of logging remain at the top level (economic and political elites). The interests of the owners of the concession in stopping the loss of resources caused by this regime offers a unique opportunity to intervene in the logic of resource degradation and agony in rural development and forest management.
Resumo:
The aim of the present paper is: 1. To provide definitions and outline trends in capacity development in Agricultural Research for Development (ARD) 2. to summarize the findings and recommendations of recent documents on planning and conducting capacity development activities in ARD 3. to present a summary and a compilation of best practices and innovative capacity development approaches among ERA-ARD consortium members 4. to derive basic principles for capacity development in ARD and to define entry points for joint and/or transnational activities to strengthen capacity development in ARD.
Resumo:
Among human peripheral blood (PB) monocyte (Mo) subsets, the classical CD14(++) CD16(-) (cMo) and intermediate CD14(++) CD16(+) (iMo) Mos are known to activate pathogenic Th17 responses, whereas the impact of nonclassical CD14(+) CD16(++) Mo (nMo) on T-cell activation has been largely neglected. The aim of this study was to obtain new mechanistic insights on the capacity of Mo subsets from healthy donors (HDs) to activate IL-17(+) T-cell responses in vitro, and assess whether this function was maintained or lost in states of chronic inflammation. When cocultured with autologous CD4(+) T cells in the absence of TLR-2/NOD2 agonists, PB nMos from HDs were more efficient stimulators of IL-17-producing T cells, as compared to cMo. These results could not be explained by differences in Mo lifespan and cytokine profiles. Notably, however, the blocking of LFA-1/ICAM-1 interaction resulted in a significant increase in the percentage of IL-17(+) T cells expanded in nMo/T-cell cocultures. As compared to HD, PB Mo subsets of patients with rheumatoid arthritis were hampered in their T-cell stimulatory capacity. Our new insights highlight the role of Mo subsets in modulating inflammatory T-cell responses and suggest that nMo could become a critical therapeutic target against IL-17-mediated inflammatory diseases.