41 resultados para Canopy cover
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
1 Light availability may be crucial for understanding dynamics of plant–herbivore interactions in temperate and tropical forest communities. This is because local light availability can influence both tree seedling tolerance and susceptibility to herbivory – yet how they mediate levels of insect herbivory that vary with the density of host population is virtually unknown. Here we tested predictions of three key, non-mutually exclusive hypotheses of plant–herbivore interactions: the Limiting Resource Model (LRM), the Plant Vigour Hypothesis (PVH), and the Janzen-Connell Mechanism (JCM). 2 In an Amazonian forest, we planted Swietenia macrophylla seedlings (c. 5 months old) into natural canopy gaps and the shaded understorey and simulated the damage patterns of the specialist herbivore moth, Steniscadia poliophaea, by clipping seedling leaves. Over the next 8 months, we monitored seedling performance in terms of growth and survivorship and also quantified herbivory to new young leaves on a seasonal basis. 3 In support of the LRM, severe leaf damage (≥ 50%) was lethal for Swietenia macrophylla seedlings in the understorey, but in gaps only reduced seedling growth. In support of the PVH, gap seedlings suffered greater post-simulated herbivory (up to 100% defoliation) by S. poliophaea caterpillars than their understorey counterparts. 4 Adding a novel dimension to the Janzen–Connell hypothesis, we found that early wet season herbivory of seedlings in gaps increased with conspecific adult density within a 125-m radius; whereas in the understorey only those seedlings within 50 m of a Swietenia tree were attacked by caterpillars. 5 Synthesis. These results suggest lepidopterans that need young leaves for food may forage more widely in forests to find seedlings in light-rich canopy gaps. Moths may achieve this successfully by being first attracted to gaps, and then searching within them for suitable hosts. A conceptual model, integrating conspecific adult tree density with light-driven changes in seedling tolerance/vigour and their susceptibility to herbivory and mortality, is presented. Spatial variation in the light available to tree seedlings often affects their tolerance and vigour, which may have important consequences for leaf-chewing insects and the scale of density-dependent herbivory in forests.
Resumo:
The major objectives of this paper are: (1) to review the pros and cons of the scenarios of past anthropogenic land cover change (ALCC) developed during the last ten years, (2) to discuss issues related to pollen-based reconstruction of the past land-cover and introduce a new method, REVEALS (Regional Estimates of VEgetation Abundance from Large Sites), to infer long-term records of past land-cover from pollen data, (3) to present a new project (LANDCLIM: LAND cover – CLIMate interactions in NW Europe during the Holocene) currently underway, and show preliminary results of REVEALS reconstructions of the regional land-cover in the Czech Republic for five selected time windows of the Holocene, and (4) to discuss the implications and future directions in climate and vegetation/land-cover modeling, and in the assessment of the effects of human-induced changes in land-cover on the regional climate through altered feedbacks. The existing ALCC scenarios show large discrepancies between them, and few cover time periods older than AD 800. When these scenarios are used to assess the impact of human land-use on climate, contrasting results are obtained. It emphasizes the need for methods such as the REVEALS model-based land-cover reconstructions. They might help to fine-tune descriptions of past land-cover and lead to a better understanding of how long-term changes in ALCC might have influenced climate. The REVEALS model is demonstrated to provide better estimates of the regional vegetation/land-cover changes than the traditional use of pollen percentages. This will achieve a robust assessment of land cover at regional- to continental-spatial scale throughout the Holocene. We present maps of REVEALS estimates for the percentage cover of 10 plant functional types (PFTs) at 200 BP and 6000 BP, and of the two open-land PFTs "grassland" and "agricultural land" at five time-windows from 6000 BP to recent time. The LANDCLIM results are expected to provide crucial data to reassess ALCC estimates for a better understanding of the land suface-atmosphere interactions.