10 resultados para Cam Research
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background: The CAMbrella coordination action was funded within the Framework Programme 7. Its aim is to provide a research roadmap for clinical and epidemiological research for complementary and alternative medicine (CAM) that is appropriate for the health needs of European citizens and acceptable to their national research institutes and healthcare providers in both public and private sectors. One major issue in the European research agenda is the demographic change and its impact on health care. Our vision for 2020 is that there is an evidence base that enables European citizens to make informed decisions about CAM, both positive and negative. This roadmap proposes a strategic research agenda for the field of CAM designed to address future European health care challenges. This roadmap is based on the results of CAMbrella’s several work packages, literature reviews and expert discussions including a consensus meeting. Methods: We first conducted a systematic literature review on key issues in clinical and epidemiological research in CAM to identify the general concepts, methods and the strengths and weaknesses of current CAM research. These findings were discussed in a workshop (Castellaro, Italy, September 7–9th 2011) with international CAM experts and strategic and methodological recommendations were defined in order to improve the rigor and relevance of CAM research. These recommendations provide the basis for the research roadmap, which was subsequently discussed in a consensus conference (Järna, Sweden, May 9–11th 2012) with all CAMbrella members and the CAMbrella advisory board. The roadmap was revised after this discussion in CAMbrella Work Package (WP) 7 and finally approved by CAMbrella’s scientific steering committee on September 26th 2012. Results: Our main findings show that CAM is very heterogenous in terms of definitions and legal regulations between the European countries. In addition, citizens’ needs and attitudes towards CAM as well as the use and provision of CAM differ significantly between countries. In terms of research methodology, there was consensus that CAM researchers should make use of all the commonly accepted scientific research methods and employ those with utmost diligence combined in a mixed methods framework. Conclusions: We propose 6 core areas of research that should be investigated to achieve a robust knowledge base and to allow stakeholders to make informed decisions. These are: Research into the prevalence of CAM in Europe: Reviews show that we do not know enough about the circumstances in which CAM is used by Europeans. To enable a common European strategic approach, a clear picture of current use is of the utmost importance. Research into differences regarding citizens’ attitudes and needs towards CAM: Citizens are the driver for CAM utilization. Their needs and views on CAM are a key priority, and their interests must be investigated and addressed in future CAM research. Research into safety of CAM: Safety is a key issue for European citizens. CAM is considered safe, but reliable data is scarce although urgently needed in order to assess the risk and cost-benefit ratio of CAM. Research into the comparative effectiveness of CAM: Everybody needs to know in what situation CAM is a reasonable choice. Therefore, we recommend a clear emphasis on concurrent evaluation of the overall effectiveness of CAM as an additional or alternative treatment strategy in real-world settings. Research into effects of context and meaning: The impact of effects of context and meaning on the outcome of CAM treatments must be investigated; it is likely that they are significant. Research into different models of CAM health care integration: There are different models of CAM being integrated into conventional medicine throughout Europe, each with their respective strengths and limitations. These models should be described and concurrently evaluated; innovative models of CAM provision in health care systems should be one focus for CAM research. We also propose a methodological framework for CAM research. We consider that a framework of mixed methodological approaches is likely to yield the most useful information. In this model, all available research strategies including comparative effectiveness research utilising quantitative and qualitative methods should be considered to enable us to secure the greatest density of knowledge possible. Stakeholders, such as citizens, patients and providers, should be involved in every stage of developing the specific and relevant research questions, study design and the assurance of real-world relevance for the research. Furthermore, structural and sufficient financial support for research into CAM is needed to strengthen CAM research capacity if we wish to understand why it remains so popular within the EU. In order to consider employing CAM as part of the solution to the health care, health creation and self-care challenges we face by 2020, it is vital to obtain a robust picture of CAM use and reliable information about its cost, safety and effectiveness in real-world settings. We need to consider the availability, accessibility and affordability of CAM. We need to engage in research excellence and utilise comparative effectiveness approaches and mixed methods to obtain this data. Our recommendations are both strategic and methodological. They are presented for the consideration of researchers and funders while being designed to answer the important and implicit questions posed by EU citizens currently using CAM in apparently increasing numbers. We propose that the EU actively supports an EUwide strategic approach that facilitates the development of CAM research. This could be achieved in the first instance through funding a European CAM coordinating research office dedicated to foster systematic communication between EU governments, public, charitable and industry funders as well as researchers, citizens and other stakeholders. The aim of this office would be to coordinate research strategy developments and research funding opportunities, as well as to document and disseminate international research activities in this field. With the aim to develop sustainability as second step, a European Centre for CAM should be established that takes over the monitoring and further development of a coordinated research strategy for CAM, as well as it should have funds that can be awarded to foster high quality and robust independent research with a focus on citizens health needs and pan-European collaboration. We wish to establish a solid funding for CAM research to adequately inform health care and health creation decision-making throughout the EU. This centre would ensure that our vision of a common, strategic and scientifically rigorous approach to CAM research becomes our legacy and Europe’s reality. We are confident that our recommendations will serve these essential goals for EU citizens.
Resumo:
The use of complementary and alternative Medicine (CAM) has increased over the past two decades in Europe. Nonetheless, research investigating the evidence to support its use remains limited. The CAMbrella project funded by the European Commission aimed to develop a strategic research agenda starting by systematically evaluating the state of CAM in the EU. CAMbrella involved 9 work packages covering issues such as the definition of CAM; its legal status, provision and use in the EU; and a synthesis of international research perspectives. Based on the work package reports, we developed a strategic and methodologically robust research roadmap based on expert workshops, a systematic Delphi-based process and a final consensus conference. The CAMbrella project suggests six core areas for research to examine the potential contribution of CAM to the health care challenges faced by the EU. These areas include evaluating the prevalence of CAM use in Europe; the EU cititzens’ needs and attitudes regarding CAM; the safety of CAM; the comparative effectiveness of CAM; the effects of meaning and context on CAM outcomes; and different models for integrating CAM into existing health care systems. CAM research should use methods generally accepted in the evaluation of health services, including comparative effectiveness studies and mixed-methods designs. A research strategy is urgently needed, ideally led by a European CAM coordinating research office dedicated to fostering systematic communication between EU governments, the public, charitable and industry funders, researchers and other stakeholders. A European Centre for CAM should also be established to monitor and further a coordinated research strategy with sufficient funds to commission and promote high quality, independent research focusing on the public’s health needs and pan-European collaboration. There is a disparity between highly prevalent use of CAM in Europe and solid knowledge about it. A strategic approach on CAM research should be established to investigate the identified gaps of knowledge and to address upcoming health care challenges.
Resumo:
The prevalence of a cam-type deformity in athletes and its association with vigorous sports activities during and after the growth period is unknown.
Resumo:
Sheep hips have a natural non-spherical femoral head similar to a cam-type deformity in human beings. By performing an intertrochanteric varus osteotomy, cam-type femoro-acetabular impingement (FAI) during flexion can be created. We tested the hypotheses that macroscopic lesions of the articular cartilage and an increased Mankin score (MS) can be reproduced by an experimentally induced cam-type FAI in this ovine in vivo model. Furthermore, we hypothesized that the MS increases with longer ambulatory periods. Sixteen sheep underwent unilateral intertrochanteric varus osteotomy of the hip with the non-operated hip as a control. Four sheep were sacrificed after 14, 22, 30, and 38-weeks postoperatively. We evaluated macroscopic chondrolabral alterations, and recorded the MS, based on histochemical staining, for each ambulatory period. A significantly higher prevalence of macroscopic chondrolabral lesions was found in the impingement zone of the operated hips. The MS was significantly higher in the acetabular/femoral cartilage of the operated hips. Furthermore, these scores increased as the length of the ambulatory period increased. Cam-type FAI can be induced in an ovine in vivo model. Localized chondrolabral degeneration of the hip, similar to that seen in humans (Tannast et al., Clin Orthop Relat Res 2008; 466: 273-280; Beck et al., J Bone Joint Surg Br 2005; 87: 1012-1018), can be reproduced. This experimental sheep model can be used to study cam-type FAI.
Resumo:
BACKGROUND Vigorous sporting activity during the growth years is associated with an increased risk of having a cam-type deformity develop. The underlying cause of this osseous deformity is unclear. One may speculate whether this is caused by reactive bone apposition in the region of the anterosuperior head-neck junction or whether sports activity alters the shape of and growth in the growth plate. If the latter is true, then one would expect athletes to show an abnormal shape of the capital growth plate (specifically, the epiphyseal extension) before and/or after physeal closure. QUESTIONS/PURPOSES We therefore raised three questions: (1) Do adolescent basketball players show abnormal epiphyseal extension? (2) Does the epiphyseal extension differ before and after physeal closure? (3) Is abnormal epiphyseal extension associated with high alpha angles? METHODS We performed a case-control comparative analysis of young (age range, 9-22 years) male elite basketball athletes with age-matched nonathletes, substratified by whether they had open or closed physes. We measured epiphyseal extension on radial-sequence MRI cuts throughout the cranial hemisphere from 9 o'clock (posterior) to 3 o'clock (anterior). Epiphyseal extension was correlated to alpha angle measurements at the same points. RESULTS Epiphyseal extension was increased in all positions in the athletes compared with the control group. On average, athletes showed epiphyseal extension of 0.67 to 0.83 versus 0.53 to 0.71 in control subjects. In the control group epiphyseal extension was increased at all measurement points in hips after physeal closure compared with before physeal closure. In contrast, the subgroup of athletes with a closed growth plate only had increased epiphyseal extension at the 3 o'clock position compared with the athletes with an open [corrected] growth plate (0.64-0.70). We observed a correlation between an alpha angle greater than 55° and greater epiphyseal extension in the anterosuperior femoral head quadrant: the corresponding Spearman r values were 0.387 (all hips) and 0.285 (alpha angle>55°) for the aggregate anterosuperior quadrant. CONCLUSIONS These findings suggest that a cam-type abnormality in athletes is a consequence of an alteration of the growth plate rather than reactive bone formation. High-level sports activity during growth may be a new and distinct risk factor for a cam-type deformity.
Resumo:
Objectives: To investigate surface roughness and microhardness of two recent resin-ceramic materials for computer-aided design/computer-aided manufacturing (CAD/CAM) after polishing with three polishing systems. Surface roughness and microhardness were measured immediately after polishing and after six months storage including monthly artificial toothbrushing. Methods: Sixty specimens of Lava Ultimate (3M ESPE) and 60 specimens of VITA ENAMIC (VITA Zahnfabrik) were roughened in a standardized manner and polished with one of three polishing systems (n=20/group): Sof-Lex XT discs (SOFLEX; three-step (medium-superfine); 3M ESPE), VITA Polishing Set Clinical (VITA; two-step; VITA Zahnfabrik), or KENDA Unicus (KENDA; one-step; KENDA Dental). Surface roughness (Ra; μm) was measured with a profilometer and microhardness (Vickers; VHN) with a surface hardness indentation device. Ra and VHN were measured immediately after polishing and after six months storage (tap water, 37°C) including monthly artificial toothbrushing (500 cycles/month, toothpaste RDA ~70). Ra- and VHN-values were analysed with nonparametric ANOVA followed by Wilcoxon rank sum tests (α=0.05). Results: For Lava Ultimate, Ra (mean [standard deviation] before/after storage) remained the same when polished with SOFLEX (0.18 [0.09]/0.19 [0.10]; p=0.18), increased significantly with VITA (1.10 [0.44]/1.27 [0.39]; p=0.0001), and decreased significantly with KENDA (0.35 [0.07]/0.33 [0.08]; p=0.03). VHN (mean [standard deviation] before/after storage) decreased significantly regardless of polishing system (SOFLEX: 134.1 [5.6]/116.4 [3.6], VITA: 138.2 [10.5]/115.4 [5.9], KENDA: 135.1 [6.2]/116.7 [6.3]; all p<0.0001). For VITA ENAMIC, Ra (mean [standard deviation] before/after storage) increased significantly when polished with SOFLEX (0.37 [0.18]/0.41 [0.14]; p=0.01) and remained the same with VITA (1.32 [0.37]/1.31 [0.40]; p=0.58) and with KENDA (0.81 [0.35]/0.78 [0.32]; p=0.21). VHN (mean [standard deviation] before/after storage) remained the same regardless of polishing system (SOFLEX: 284.9 [24.6]/282.4 [31.8], VITA: 284.6 [28.5]/276.4 [25.8], KENDA: 292.6 [26.9]/282.9 [24.3]; p=0.42-1.00). Conclusion: Surface roughness and microhardness of Lava Ultimate was more affected by storage and artificial toothbrushing than was VITA ENAMIC.
Resumo:
BACKGROUND In some hips with cam-type femoroacetabular impingement (FAI), we observed a morphology resembling a more subtle form of slipped capital femoral epiphysis (SCFE). Theoretically, the morphology in these hips should differ from hips with a primary cam-type deformity. QUESTIONS/PURPOSES We asked if (1) head-neck offset; (2) epiphyseal angle; and (3) tilt angle differ among hips with a slip-like morphology, idiopathic cam, hips after in situ pinning of SCFE, and normal hips; and (4) what is the prevalence of a slip-like morphology among cam-type hips? METHODS We retrospectively compared the three-dimensional anatomy of hips with a slip-like morphology (29 hips), in situ pinning for SCFE (eight hips), idiopathic cam deformity (171 hips), and 30 normal hips using radial MRI arthrography. Normal hips were derived from 17 asymptomatic volunteers. All other hips were recruited from a series of 277 hips (243 patients) seen at a specialized academic hip center between 2006 and 2010. Forty-one hips with isolated pincer deformity were excluded. Thirty-six of 236 hips had a known cause of cam impingement (secondary cam), including eight hips after in situ pinning of SCFE (postslip group). The 200 hips with a primary cam were separated in hips with a slip-like morphology (combination of positive fovea sign [if the neck axis did not intersect with the fovea capitis] and a tilt angle [between the neck axis and perpendicular to the basis of the epiphysis] exceeding 4°) and hips with an idiopathic cam. We evaluated offset ratio, epiphyseal angle (angle between the neck axis and line connecting the center of the femoral head and the point where the physis meets the articular surface), and tilt angle circumferentially around the femoral head-neck axis. Prevalence of slip-like morphology was determined based on the total of 236 hips with cam deformities. RESULTS Offset ratio was decreased anterosuperiorly in idiopathic cam, slip-like, and postslip (eg, 1 o'clock position with a mean offset ranging from 0.00 to 0.14; p < 0.001 for all groups) compared with normal hips (0.25 ± 0.06 [95% confidence interval, 0.13-0.37]) and increased posteroinferiorly in slip-like (eg, 8 o'clock position, 0.5 ± 0.09 [0.32-0.68]; p < 0.001) and postslip groups (0.55 ± 0.12 [0.32-0.78]; p < 0.001) and did not differ in idiopathic cam (0.32 ± 0.09 [0.15-0.49]; p = 0.323) compared with normal (0.31 ± 0.07 [0.18-0.44]) groups. Epiphyseal angle was increased anterosuperiorly in the slip-like (eg, 1 o'clock position, 70° ± 9° [51°-88°]; p < 0.001) and postslip groups (75° ± 13° [49°-100°]; p = 0.008) and decreased in idiopathic cam (50° ± 8° [35°-65°]; p < 0.001) compared with normal hips (58° ± 8° [43°-74°]). Posteroinferiorly, epiphyseal angle was decreased in slip-like (eg, 8 o'clock position, 54° ± 10° [34°-74°]; p < 0.001) and postslip (44° ± 11° [23°-65°]; p < 0.001) groups and did not differ in idiopathic cam (76° ± 8° [61°-91°]; p = 0.099) compared with normal (73° ± 7° [59°-88°]) groups. Tilt angle increased in slip-like (eg, 2/8 o'clock position, 14° ± 8° [-1° to 30°]; p < 0.001) and postslip hips (29° ± 10° [9°-48°]; p < 0.001) and decreased in hips with idiopathic cam (-7° ± 5° [-17° to 4°]; p < 0.001) compared with normal (-1° ± 5° [-10° to 8°]) hips. The prevalence of a slip-like morphology was 12%. CONCLUSIONS The slip-like morphology is the second most frequent pathomorphology in hips with primary cam deformity. MRI arthrography of the hip allows identifying a slip-like morphology, which resembles hips after in situ pinning of SCFE and distinctly differs from hips with idiopathic cam. These results support previous studies reporting that SCFE might be a risk factor for cam-type FAI.
Resumo:
Hips with a cam deformity are at risk for early cartilage degeneration, mainly in the anterolateral region of the joint. T1ρ MRI is a described technique for assessment of proteoglycan content in hyaline cartilage and subsequently early cartilage damage. In this study, 1.5 Tesla T1ρ MRI was performed on 20 asymptomatic hips with a cam deformity and compared to 16 healthy control hips. Cam deformity was defined as an alpha angle at 1:30 o'clock position over 60° and/or at 3:00 o'clock position over 50.5°. Hip cartilage was segmented and divided into four regions of interest (ROIs): anterolateral, anteromedial, posterolateral and posteromedial quadrants. Mean T1ρ value of the entire weight bearing cartilage in hips with a cam deformity (34.0 ± 4.6 ms) was significantly higher compared to control hips (31.3 ± 3.2 ms, p = 0.050). This difference reached significance in the anterolateral (p = 0.042) and posteromedial quadrants (p = 0.041). No significant correlation between the alpha angle and T1ρ values was detected. The results indicate cartilage damage occurs in hips with a cam deformity before symptoms occur. A significant difference in T1ρ values was found in the anterolateral quadrant, the area of direct engagement of the deformity, and in the posteromedial quadrant. To conclude, T1ρ MRI can detect early chondral damage in asymptomatic hips with a cam deformity. This article is protected by copyright. All rights reserved.
Resumo:
OBJECTIVE To compare the precision of fit of long-span vs. short-span implant-supported screw-retained fixed dental prostheses (FDPs) made from computer-aided-design/computer-aided-manufactured (CAD/CAM) titanium and veneered with ceramic. The null hypothesis was that there is no difference in the vertical microgap between long-span and short-span FDPs. MATERIALS AND METHODS CAD/CAM titanium frameworks for an implant-supported maxillary FDP on implants with a flat platform were fabricated on one single master cast. Group A consisted of six 10-unit FDPs connected to six implants (FDI positions 15, 13, 11, 21, 23, 25) and group B of six 5-unit FDPs (three implants, FDI positions 21, 23, 25). The CAD/CAM system from Biodenta Swiss AG (Berneck, Switzerland) was used for digitizing (laser scanner) the master cast and anatomical CAD of each framework separately. The frameworks were milled (CAM) from a titanium grade V monobloc and veneered with porcelain. Median vertical distance between implant and FDP platforms from the non-tightened implants (one-screw test on implant 25) was calculated from mesial, buccal, and distal scanning electron microscope measurements. RESULTS All measurements showed values <40 μm. Total median vertical microgaps were 23 μm (range 2-38 μm) for group A and 7 μm (4-24 μm) for group B. The difference between the groups was statistically significant at implant 21 (P = 0.002; 97.5% CI -27.3 to -4.9) and insignificant at implant 23 (P = 0.093; -3.9 to 1.0). CONCLUSIONS CAD/CAM fabrication including laboratory scanning and porcelain firing was highly precise and reproducible for all long- and short-span FDPs. While all FDPs showed clinically acceptable values, the short-span FDPs were statistically more precise at the 5-unit span distance.