80 resultados para Calibration plot
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Arterial pressure-based cardiac output monitors (APCOs) are increasingly used as alternatives to thermodilution. Validation of these evolving technologies in high-risk surgery is still ongoing. In liver transplantation, FloTrac-Vigileo (Edwards Lifesciences) has limited correlation with thermodilution, whereas LiDCO Plus (LiDCO Ltd.) has not been tested intraoperatively. Our goal was to directly compare the 2 proprietary APCO algorithms as alternatives to pulmonary artery catheter thermodilution in orthotopic liver transplantation (OLT). The cardiac index (CI) was measured simultaneously in 20 OLT patients at prospectively defined surgical landmarks with the LiDCO Plus monitor (CI(L)) and the FloTrac-Vigileo monitor (CI(V)). LiDCO Plus was calibrated according to the manufacturer's instructions. FloTrac-Vigileo did not require calibration. The reference CI was derived from pulmonary artery catheter intermittent thermodilution (CI(TD)). CI(V)-CI(TD) bias ranged from -1.38 (95% confidence interval = -2.02 to -0.75 L/minute/m(2), P = 0.02) to -2.51 L/minute/m(2) (95% confidence interval = -3.36 to -1.65 L/minute/m(2), P < 0.001), and CI(L)-CI(TD) bias ranged from -0.65 (95% confidence interval = -1.29 to -0.01 L/minute/m(2), P = 0.047) to -1.48 L/minute/m(2) (95% confidence interval = -2.37 to -0.60 L/minute/m(2), P < 0.01). For both APCOs, bias to CI(TD) was correlated with the systemic vascular resistance index, with a stronger dependence for FloTrac-Vigileo. The capability of the APCOs for tracking changes in CI(TD) was assessed with a 4-quadrant plot for directional changes and with receiver operating characteristic curves for specificity and sensitivity. The performance of both APCOs was poor in detecting increases and fair in detecting decreases in CI(TD). In conclusion, the calibrated and uncalibrated APCOs perform differently during OLT. Although the calibrated APCO is less influenced by changes in the systemic vascular resistance, neither device can be used interchangeably with thermodilution to monitor cardiac output during liver transplantation.
Resumo:
Navigated ultrasound (US) imaging is used for the intra-operative acquisition of 3D image data during imageguided surgery. The presented approach includes the design of a compact and easy to use US calibration device and its integration into a software application for navigated liver surgery. User interaction during the calibration process is minimized through automatic detection of the calibration process followed by automatic image segmentation, calculation of the calibration transform and validation of the obtained result. This leads to a fast, interaction-free and fully automatic calibration procedure enabling intra-operative
Resumo:
Afdeyu Station is one of the few river gauging stations in the highlands of Eritrea where daily measurements are taken. As a result of damages, the station was refurbished, and the cross section of the gauge was changed to have better control of minimal runoff. The gauge therefore had to be re-calibrated. This publication documents this process and also provides the new calibration curve, based on extensive field work carried out in the rainy season 2009
Resumo:
Abstract Background and Aims: Data on the influence of calibration on accuracy of continuous glucose monitoring (CGM) are scarce. The aim of the present study was to investigate whether the time point of calibration has an influence on sensor accuracy and whether this effect differs according to glycemic level. Subjects and Methods: Two CGM sensors were inserted simultaneously in the abdomen on either side of 20 individuals with type 1 diabetes. One sensor was calibrated predominantly using preprandial glucose (calibration(PRE)). The other sensor was calibrated predominantly using postprandial glucose (calibration(POST)). At minimum three additional glucose values per day were obtained for analysis of accuracy. Sensor readings were divided into four categories according to the glycemic range of the reference values (low, ≤4 mmol/L; euglycemic, 4.1-7 mmol/L; hyperglycemic I, 7.1-14 mmol/L; and hyperglycemic II, >14 mmol/L). Results: The overall mean±SEM absolute relative difference (MARD) between capillary reference values and sensor readings was 18.3±0.8% for calibration(PRE) and 21.9±1.2% for calibration(POST) (P<0.001). MARD according to glycemic range was 47.4±6.5% (low), 17.4±1.3% (euglycemic), 15.0±0.8% (hyperglycemic I), and 17.7±1.9% (hyperglycemic II) for calibration(PRE) and 67.5±9.5% (low), 24.2±1.8% (euglycemic), 15.5±0.9% (hyperglycemic I), and 15.3±1.9% (hyperglycemic II) for calibration(POST). In the low and euglycemic ranges MARD was significantly lower in calibration(PRE) compared with calibration(POST) (P=0.007 and P<0.001, respectively). Conclusions: Sensor calibration predominantly based on preprandial glucose resulted in a significantly higher overall sensor accuracy compared with a predominantly postprandial calibration. The difference was most pronounced in the hypo- and euglycemic reference range, whereas both calibration patterns were comparable in the hyperglycemic range.