16 resultados para Calculated from electrical resistivity measurements
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To (1) establish the feasibility of texture analysis for the in vivo assessment of biochemical changes in meniscal tissue on delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC), and (2) compare textural with conventional T1 relaxation time measurements calculated from dGEMRIC data ("T1(Gd) relaxation times").
Resumo:
In a first experiment, a reactively sputtered amorphous Ta₄₂Si₁₃N₄₅ film about 260 nm thick deposited on a flat and smooth alumina substrate was thermally annealed in air for 30 min and let cooled again repeatedly at successively higher temperatures from 200 to 500 °C. This treatment successively and irreversibly increases the room temperature resistivity of the film monotonically from its initial value of 670 μΩ cm to a maximum of 705 μΩ cm (+5.2 %). Subsequent heat treatments at temperatures below 500 °C and up to 6 h have no further effect on the room temperature resistivity. The new value remains unchanged after 3.8 years of storage at room temperature. In a second experiment, the evolution of the initially compressive stress of a film similarly deposited by reactive sputtering on a 2-inch silicon wafer was measured by tracking the wafer curvature during similar thermal annealing cycles. A similar pattern of irreversible and reversible changes of stress was observed as for the film resistivity. Transmission electron micrographs and secondary ion mass profiles of the film taken before and after thermal annealing in air establish that both the structure and the composition of the film scarcely change during the annealing cycles. We reason that the film stress is implicated in the resistivity change. In particular, to interpret the observations, a model is proposed where the interface between the film and the substrate is mechanically unyielding.
Resumo:
AIMS: The objective of the present study was to investigate the relationship between extremely low-frequency magnetic field (ELF-MF) exposure and mortality from several neurodegenerative conditions in Swiss railway employees. METHODS: We studied a cohort of 20,141 Swiss railway employees with 464,129 person-years of follow-up between 1972 and 2002. For each individual, cumulative exposure was calculated from on-site measurements and modelling of past exposure. We compared cause-specific mortality in highly exposed train drivers (mean exposure: 21 microT) with less exposed occupational groups (for example station masters: 1 microT). RESULTS: The hazard ratio for train drivers compared to station masters was 1.96 [95% confidence interval (CI) = 0.98-3.92] for senile dementia and 3.15 (95% CI = 0.90-11.04) for Alzheimer's disease. For every 10 microT years of cumulative exposure senile dementia mortality increased by 5.7% (95% CI = 1.3-10.4), Alzheimer's disease by 9.4% (95% CI = 2.7-16.4) and amyotrophic lateral sclerosis by 2.1% (95% CI = -6.8 to 11.7). There was no evidence for an increase in mortality from Parkinson's disease and multiple sclerosis. CONCLUSIONS: This study suggests a link between exposure to ELF-MF and Alzheimer's disease and indicates that ELF-MF might act in later stages of the disease process.
Resumo:
The objective of this study was to determine if area measurements of pleural fluid on computed tomography (CT) reflect the actual pleural fluid volume (PEvol) as measured at autopsy, to establish a formula to estimate the volume of pleural effusion (PEest), and to test the accuracy and observer reliability of PEest.132 human cadavers, with pleural effusion were divided into phase 1 (n = 32) and phase 2 (n = 100). In phase 1, PEvol was compared to area measurements on axial (axA), sagittal (sagA), and coronal (corA) CT images. Linear regression analysis was used to create a formula to calculate PEest. In phase 2, intra-class correlation (ICC) was used to assess inter-reader reliability and determine the agreement between PEest and PEvol. PEvol correlated to a higher degree to axA (r s mean = 0.738; p < 0.001) than to sagA (r s mean = 0.679, p < 0.001) and corA (r s mean = 0.709; p < 0.001). PEest can be established with the following formula: axA × 0.1 = PEest. Mean difference between PEest and PEvol was less than 40 mL (ICC = 0.837-0.874; p < 0.001). Inter-reader reliability was higher between two experienced readers (ICC = 0.984-0.987; p < 0.001) than between an inexperienced reader and both experienced readers (ICC = 0.660-0.698; p < 0.001). Pleural effusions may be quantified in a rapid, reliable, and reasonably accurate fashion using single area measurements on CT.
Resumo:
AIMS: To investigate the relationship between extremely low frequency magnetic field (ELF-MF) exposure and mortality from leukaemia and brain tumour in a cohort of Swiss railway workers. METHODS: 20,141 Swiss railway employees with 464,129 person-years of follow-up between 1972 and 2002 were studied. Mortality rates for leukaemia and brain tumour of highly exposed train drivers (21 muT average annual exposure) were compared with medium and low exposed occupational groups (i.e. station masters with an average exposure of 1 muT). In addition, individual cumulative exposure was calculated from on-site measurements and modelling of past exposures. RESULTS: The hazard ratio (HR) for leukaemia mortality of train drivers was 1.43 (95% CI 0.74 to 2.77) compared with station masters. For myeloid leukaemia the HR of train drivers was 4.74 (95% CI 1.04 to 21.60) and for Hodgkin's disease 3.29 (95% CI 0.69 to 15.63). Lymphoid leukaemia, non-Hodgkin's disease and brain tumour mortality were not associated with magnetic field exposure. Concordant results were obtained from analyses based on individual cumulative exposure. CONCLUSIONS: Some evidence of an exposure-response association was found for myeloid leukaemia and Hodgkin's disease, but not for other haematopoietic and lymphatic malignancies and brain tumours.
Resumo:
BACKGROUND: Estimation of respiratory deadspace is often based on the CO2 expirogram, however presence of the CO2 sensor increases equipment deadspace, which in turn influences breathing pattern and calculation of lung volume. In addition, it is necessary to correct for the delay between the sensor and flow signals. We propose a new method for estimation of effective deadspace using the molar mass (MM) signal from an ultrasonic flowmeter device, which does not require delay correction. We hypothesize that this estimation is correlated with that calculated from the CO2 signal using the Fowler method. METHODS: Breath-by-breath CO2, MM and flow measurements were made in a group of 77 term-born healthy infants. Fowler deadspace (Vd,Fowler) was calculated after correcting for the flow-dependent delay in the CO2 signal. Deadspace estimated from the MM signal (Vd,MM) was defined as the volume passing through the flowhead between start of expiration and the 10% rise point in MM. RESULTS: Correlation (r = 0.456, P < 0.0001) was found between Vd,MM and Vd,Fowler averaged over all measurements, with a mean difference of -1.4% (95% CI -4.1 to 1.3%). Vd,MM ranged from 6.6 to 11.4 ml between subjects, while Vd,Fowler ranged from 5.9 to 12.0 ml. Mean intra-measurement CV over 5-10 breaths was 7.8 +/- 5.6% for Vd,MM and 7.8 +/- 3.7% for Vd,Fowler. Mean intra-subject CV was 6.0 +/- 4.5% for Vd,MM and 8.3 +/- 5.9% for Vd,Fowler. Correcting for the CO2 signal delay resulted in a 12% difference (P = 0.022) in Vd,Fowler. Vd,MM could be obtained more frequently than Vd,Fowler in infants with CLD, with a high variability. CONCLUSIONS: Use of the MM signal provides a feasible estimate of Fowler deadspace without introducing additional equipment deadspace. The simple calculation without need for delay correction makes individual adjustment for deadspace in FRC measurements possible. This is especially important given the relative large range of deadspace seen in this homogeneous group of infants.
Resumo:
PURPOSE The present study aimed at the comparison of body height estimations from cadaver length with body height estimations according to Trotter and Gleser (1952) and Penning and Riepert (2003) on the basis of femoral F1 section measurements in post-mortem computed tomography (PMCT) images. METHODS In a post-mortem study in a contemporary Swiss population (226 corpses: 143 males (mean age: 53±17years) and 83 females (mean age: 61±20years)) femoral F1 measurements (403 femora: 199 right and 204 left; 177 pairs) were conducted in PMCT images and F1 was used for body height estimation using the equations after Trotter and Gleser (1952, "American Whites"), and Penning and Riepert (2003). RESULTS The mean observed cadaver length was 176.6cm in males and 163.6cm in females. Mean measured femoral length F1 was 47.5cm (males) and 44.1cm (females) respectively. Comparison of body height estimated from PMCT F1 measurements with body height calculated from cadaver length showed a close congruence (mean difference less than 0.95cm in males and less than 1.99cm in females) for equations both applied after Penning and Riepert and Trotter and Gleser. CONCLUSIONS Femoral F1 measurements in PMCT images are very accurate, reproducible and feasible for body height estimation of a contemporary Swiss population when using the equations after Penning and Riepert (2003) or Trotter and Gleser (1952).
Resumo:
The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.
Resumo:
PURPOSE: To test the reproducibility of retinal thickness measurements in healthy volunteers of a new Frequency-domain optical coherence tomography (OCT) device (Spectralis OCT; Heidelberg Engineering, Heidelberg, Germany). DESIGN: Prospective, observational study. METHODS: Forty-one eyes of 41 healthy subjects were included into the study. Intraobserver reproducibility was tested with 20 x 15 degree raster scans consisting of 37 high-resolution line scans that were repeated three times by one examiner (M.N.M.). Mean retinal thickness was calculated for nine areas corresponding to the Early Treatment Diabetic Retinopathy Study (ETDRS) areas. Coefficients of variation (COV) were calculated. RESULTS: Retinal thickness measurements were highly reproducible for all ETDRS areas. Mean total retinal thickness was 342 +/- 15 microm. Mean foveal thickness was 286 +/- 17 microm. COVs ranged from 0.38% to 0.86%. Lowest COV was found for the temporal outer ETDRS area (area 7; COV, 0.38%). Highest COV was found for the temporal inner ETDRS area (area 3; COV, 0.86%). Mean difference between measurement 1 and 2, measurement 1 and 3, and measurement 2 and 3 for all ETDRS areas was 1.01 microm, 0.98 microm, and 0.99 microm, respectively. CONCLUSION: Spectralis OCT retinal thickness measurements in healthy volunteers showed excellent intraobserver reproducibility with virtually identical results between retinal thickness measurements performed by one operator.