17 resultados para Calculated, eddy covariance method
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Nitrous oxide fluxes were measured at the Lägeren CarboEurope IP flux site over the multi-species mixed forest dominated by European beech and Norway spruce. Measurements were carried out during a four-week period in October–November 2005 during leaf senescence. Fluxes were measured with a standard ultrasonic anemometer in combination with a quantum cascade laser absorption spectrometer that measured N2O, CO2, and H2O mixing ratios simultaneously at 5 Hz time resolution. To distinguish insignificant fluxes from significant ones it is proposed to use a new approach based on the significance of the correlation coefficient between vertical wind speed and mixing ratio fluctuations. This procedure eliminated roughly 56% of our half-hourly fluxes. Based on the remaining, quality checked N2O fluxes we quantified the mean efflux at 0.8±0.4 μmol m−2 h−1 (mean ± standard error). Most of the contribution to the N2O flux occurred during a 6.5-h period starting 4.5 h before each precipitation event. No relation with precipitation amount could be found. Visibility data representing fog density and duration at the site indicate that wetting of the canopy may have as strong an effect on N2O effluxes as does below-ground microbial activity. It is speculated that above-ground N2O production from the senescing leaves at high moisture (fog, drizzle, onset of precipitation event) may be responsible for part of the measured flux.
Resumo:
Long-term measurements of CO2 flux can be obtained using the eddy covariance technique, but these datasets are affected by gaps which hinder the estimation of robust long-term means and annual ecosystem exchanges. We compare results obtained using three gap-fill techniques: multiple regression (MR), multiple imputation (MI), and artificial neural networks (ANNs), applied to a one-year dataset of hourly CO2 flux measurements collected in Lutjewad, over a flat agriculture area near the Wadden Sea dike in the north of the Netherlands. The dataset was separated in two subsets: a learning and a validation set. The performances of gap-filling techniques were analysed by calculating statistical criteria: coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), maximum absolute error (MaxAE), and mean square bias (MSB). The gap-fill accuracy is seasonally dependent, with better results in cold seasons. The highest accuracy is obtained using ANN technique which is also less sensitive to environmental/seasonal conditions. We argue that filling gaps directly on measured CO2 fluxes is more advantageous than the common method of filling gaps on calculated net ecosystem change, because ANN is an empirical method and smaller scatter is expected when gap filling is applied directly to measurements.
Resumo:
The understanding of the continental carbon budget is essential to predict future climate change. In order to quantify CO₂ and CH₄ fluxes at the regional scale, a measurement system was installed at the former radio tower in Beromünster as part of the Swiss greenhouse gas monitoring network (CarboCount CH). We have been measuring the mixing ratios of CO₂, CH₄ and CO on this tower with sample inlets at 12.5, 44.6, 71.5, 131.6 and 212.5 m above ground level using a cavity ring down spectroscopy (CRDS) analyzer. The first 2-year (December 2012–December 2014) continuous atmospheric record was analyzed for seasonal and diurnal variations and interspecies correlations. In addition, storage fluxes were calculated from the hourly profiles along the tower. The atmospheric growth rates from 2013 to 2014 determined from this 2-year data set were 1.78 ppm yr⁻¹, 9.66 ppb yr⁻¹ and and -1.27 ppb yr⁻¹ for CO₂, CH₄ and CO, respectively. After detrending, clear seasonal cycles were detected for CO₂ and CO, whereas CH₄ showed a stable baseline suggesting a net balance between sources and sinks over the course of the year. CO and CO₂ were strongly correlated (r² > 0.75) in winter (DJF), but almost uncorrelated in summer. In winter, anthropogenic emissions dominate the biospheric CO₂ fluxes and the variations in mixing ratios are large due to reduced vertical mixing. The diurnal variations of all species showed distinct cycles in spring and summer, with the lowest sampling level showing the most pronounced diurnal amplitudes. The storage flux estimates exhibited reasonable diurnal shapes for CO₂, but underestimated the strength of the surface sinks during daytime. This seems plausible, keeping in mind that we were only able to calculate the storage fluxes along the profile of the tower but not the flux into or out of this profile, since no Eddy covariance flux measurements were taken at the top of the tower.
Resumo:
BACKGROUND Patients with femoroacetabular impingement (FAI) often develop pain, impaired function, and progression of osteoarthritis (OA); this is commonly treated using surgical hip dislocation, femoral neck and acetabular rim osteoplasty, and labral reattachment. However, results with these approaches, in particular risk factors for OA progression and conversion to THA, have varied. QUESTIONS/PURPOSES We asked if patients undergoing surgical hip dislocation with labral reattachment to treat FAI experienced (1) improved hip pain and function; and (2) prevention of OA progression; we then determined (3) the survival of the hip at 5-year followup with the end points defined as the need for conversion to THA, progression of OA by at least one Tönnis grade, and/or a Merle d'Aubigné-Postel score less than 15; and calculated (4) factors predicting these end points. METHODS Between July 2001 and March 2003, we performed 146 of these procedures in 121 patients. After excluding 35 patients (37 hips) who had prior open surgery and 11 patients (12 hips) who had a diagnosis of Perthes disease, this study evaluated the 75 patients (97 hips, 66% of the procedures we performed during that time) who had a mean followup of 6 years (range, 5-7 years). We used the anterior impingement test to assess pain, the Merle d'Aubigné-Postel score to assess function, and the Tönnis grade to assess OA. Survival and predictive factors were calculated using the method of Kaplan and Meier and Cox regression, respectively. RESULTS The proportion of patients with anterior impingement decreased from 95% to 17% (p < 0.001); the Merle d'Aubigné-Postel score improved from a mean of 15 to 17 (p < 0.001). Seven hips (7%) showed progression of OA and another seven hips (7%) converted to THA Survival free from any end point (THA, progression of OA, or a Merle d'Aubigné-Postel < 15) of well-functioning joints at 5 years was 91%; and excessive acetabular rim trimming, preoperative OA, increased age at operation, and weight were predictive factors for the end points. CONCLUSIONS At 5-year followup, 91% of patients with FAI treated with surgical hip dislocation, osteoplasty, and labral reattachment showed no THA, progression of OA, or an insufficient clinical result, but excessive acetabular trimming, OA, increased age, and weight were associated with early failure. To prevent early deterioration of the joint, excessive rim trimming or trimming of borderline dysplastic hips has to be avoided.
Resumo:
Whereas whole first-milked colostrum IgG1 variation is documented, the IgG1 difference between the quarter mammary glands of dairy animals is unknown. First colostrum was quarter-collected from healthy udders of 8 multiparous dairy cows, all within 3h of parturition. Weight of colostrum produced by individual quarters was determined and a sample of each was frozen for subsequent analysis. Immunoglobulin G1 concentration (mg/mL) was measured by ELISA and total mass (g) was calculated. Standard addition method was used to overcome colostrum matrix effects and validate the standard ELISA measures. Analysis of the data showed that cow and quarter (cow) were significantly different in both concentration and total mass per quarter. Analysis of the mean IgG1 concentration of the front and rear quarters showed that this was not different, but the large variation in individual quarters confounds the analysis. This quarter difference finding indicates that each mammary gland develops a different capacity to accumulate precolostrum IgG1, whereas the circulating hormone concentrations that induce colostrogenesis reach the 4 glands similarly. This finding also shows that the variation in quarter colostrum production is a contributor to the vast variation in first milking colostrum IgG1 content. Finally, the data suggests other factors, such as locally acting autocrine or paracrine, epigenetic, or stochasticity, in gene regulation mechanisms may impinge on colostrogenesis capacity.
Resumo:
The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.
Resumo:
The aim of this study was to validate the accuracy and reproducibility of a statistical shape model-based 2D/3D reconstruction method for determining cup orientation after total hip arthroplasty. With a statistical shape model, this method allows reconstructing a patient-specific 3D-model of the pelvis from a standard AP X-ray radiograph. Cup orientation (inclination and anteversion) is then calculated with respect to the anterior pelvic plane that is derived from the reconstructed model.
Resumo:
Our goal was to validate accuracy, consistency, and reproducibility/reliability of a new method for determining cup orientation in total hip arthroplasty (THA). This method allows matching the 3D-model from CT images or slices with the projected pelvis on an anteroposterior pelvic radiograph using a fully automated registration procedure. Cup orientation (inclination and anteversion) is calculated relative to the anterior pelvic plane, corrected for individual malposition of the pelvis during radiograph acquisition. Measurements on blinded and randomized radiographs of 80 cadaver and 327 patient hips were investigated. The method showed a mean accuracy of 0.7 +/- 1.7 degrees (-3.7 degrees to 4.0 degrees) for inclination and 1.2 +/- 2.4 degrees (-5.3 degrees to 5.6 degrees) for anteversion in the cadaver trials and 1.7 +/- 1.7 degrees (-4.6 degrees to 5.5 degrees) for inclination and 0.9 +/- 2.8 degrees (-5.2 degrees to 5.7 degrees) for anteversion in the clinical data when compared to CT-based measurements. No systematic errors in accuracy were detected with the Bland-Altman analysis. The software consistency and the reproducibility/reliability were very good. This software is an accurate, consistent, reliable, and reproducible method to measure cup orientation in THA using a sophisticated 2D/3D-matching technique. Its robust and accurate matching algorithm can be expanded to statistical models.
Resumo:
PURPOSE Positron emission tomography (PET)∕computed tomography (CT) measurements on small lesions are impaired by the partial volume effect, which is intrinsically tied to the point spread function of the actual imaging system, including the reconstruction algorithms. The variability resulting from different point spread functions hinders the assessment of quantitative measurements in clinical routine and especially degrades comparability within multicenter trials. To improve quantitative comparability there is a need for methods to match different PET∕CT systems through elimination of this systemic variability. Consequently, a new method was developed and tested that transforms the image of an object as produced by one tomograph to another image of the same object as it would have been seen by a different tomograph. The proposed new method, termed Transconvolution, compensates for differing imaging properties of different tomographs and particularly aims at quantitative comparability of PET∕CT in the context of multicenter trials. METHODS To solve the problem of image normalization, the theory of Transconvolution was mathematically established together with new methods to handle point spread functions of different PET∕CT systems. Knowing the point spread functions of two different imaging systems allows determining a Transconvolution function to convert one image into the other. This function is calculated by convolving one point spread function with the inverse of the other point spread function which, when adhering to certain boundary conditions such as the use of linear acquisition and image reconstruction methods, is a numerically accessible operation. For reliable measurement of such point spread functions characterizing different PET∕CT systems, a dedicated solid-state phantom incorporating (68)Ge∕(68)Ga filled spheres was developed. To iteratively determine and represent such point spread functions, exponential density functions in combination with a Gaussian distribution were introduced. Furthermore, simulation of a virtual PET system provided a standard imaging system with clearly defined properties to which the real PET systems were to be matched. A Hann window served as the modulation transfer function for the virtual PET. The Hann's apodization properties suppressed high spatial frequencies above a certain critical frequency, thereby fulfilling the above-mentioned boundary conditions. The determined point spread functions were subsequently used by the novel Transconvolution algorithm to match different PET∕CT systems onto the virtual PET system. Finally, the theoretically elaborated Transconvolution method was validated transforming phantom images acquired on two different PET systems to nearly identical data sets, as they would be imaged by the virtual PET system. RESULTS The proposed Transconvolution method matched different PET∕CT-systems for an improved and reproducible determination of a normalized activity concentration. The highest difference in measured activity concentration between the two different PET systems of 18.2% was found in spheres of 2 ml volume. Transconvolution reduced this difference down to 1.6%. In addition to reestablishing comparability the new method with its parameterization of point spread functions allowed a full characterization of imaging properties of the examined tomographs. CONCLUSIONS By matching different tomographs to a virtual standardized imaging system, Transconvolution opens a new comprehensive method for cross calibration in quantitative PET imaging. The use of a virtual PET system restores comparability between data sets from different PET systems by exerting a common, reproducible, and defined partial volume effect.
Resumo:
BACKGROUND Cardiac events (CEs) are among the most serious late effects following childhood cancer treatment. To establish accurate risk estimates for the occurrence of CEs it is essential that they are graded in a valid and consistent manner, especially for international studies. We therefore developed a data-extraction form and a set of flowcharts to grade CEs and tested the validity and consistency of this approach in a series of patients. METHODS The Common Terminology Criteria for Adverse Events version 3.0 and 4.0 were used to define the CEs. Forty patients were randomly selected from a cohort of 72 subjects with known CEs that had been graded by a physician for an earlier study. To establish whether the new method was valid for appropriate grading, a non-physician graded the CEs by using the new method. To evaluate consistency of the grading, the same charts were graded again by two other non-physicians, one with receiving brief introduction and one with receiving extensive training on the new method. We calculated weighted Kappa statistics to quantify inter-observer agreement. RESULTS The inter-observer agreement was 0.92 (95% CI 0.80-1.00) for validity, and 0.88 (0.79-0.98) and 0.99 (0.96-1.00) for consistency with the outcome assessors who had the brief introduction and the extensive training, respectively. CONCLUSIONS The newly developed standardized method to grade CEs using data from medical records has shown excellent validity and consistency. The study showed that the method can be correctly applied by researchers without a medical background, provided that they receive adequate training.
Resumo:
Histomorphometric evaluation of the buccal aspects of periodontal tissues in rodents requires reproducible alignment of maxillae and highly precise sections containing central sections of buccal roots; this is a cumbersome and technically sensitive process due to the small specimen size. The aim of the present report is to describe and analyze a method to transfer virtual sections of micro-computer tomographic (CT)-generated image stacks to the microtome for undecalcified histological processing and to describe the anatomy of the periodontium in rat molars. A total of 84 undecalcified sections of all buccal roots of seven untreated rats was analyzed. The accuracy of section coordinate transfer from virtual micro-CT slice to the histological slice, right-left side differences and the measurement error for linear and angular measurements on micro-CT and on histological micrographs were calculated using the Bland-Altman method, interclass correlation coefficient and the method of moments estimator. Also, manual alignment of the micro-CT-scanned rat maxilla was compared with multiplanar computer-reconstructed alignment. The supra alveolar rat anatomy is rather similar to human anatomy, whereas the alveolar bone is of compact type and the keratinized gingival epithelium bends apical to join the junctional epithelium. The high methodological standardization presented herein ensures retrieval of histological slices with excellent display of anatomical microstructures, in a reproducible manner, minimizes random errors, and thereby may contribute to the reduction of number of animals needed.
Resumo:
OBJECTIVE: To develop a behavioural observation method to simultaneously assess distractors and communication/teamwork during surgical procedures through direct, on-site observations; to establish the reliability of the method for long (>3 h) procedures. METHODS: Observational categories for an event-based coding system were developed based on expert interviews, observations and a literature review. Using Cohen's κ and the intraclass correlation coefficient, interobserver agreement was assessed for 29 procedures. Agreement was calculated for the entire surgery, and for the 1st hour. In addition, interobserver agreement was assessed between two tired observers and between a tired and a non-tired observer after 3 h of surgery. RESULTS: The observational system has five codes for distractors (door openings, noise distractors, technical distractors, side conversations and interruptions), eight codes for communication/teamwork (case-relevant communication, teaching, leadership, problem solving, case-irrelevant communication, laughter, tension and communication with external visitors) and five contextual codes (incision, last stitch, personnel changes in the sterile team, location changes around the table and incidents). Based on 5-min intervals, Cohen's κ was good to excellent for distractors (0.74-0.98) and for communication/teamwork (0.70-1). Based on frequency counts, intraclass correlation coefficient was excellent for distractors (0.86-0.99) and good to excellent for communication/teamwork (0.45-0.99). After 3 h of surgery, Cohen's κ was 0.78-0.93 for distractors, and 0.79-1 for communication/teamwork. DISCUSSION: The observational method developed allows a single observer to simultaneously assess distractors and communication/teamwork. Even for long procedures, high interobserver agreement can be achieved. Data collected with this method allow for investigating separate or combined effects of distractions and communication/teamwork on surgical performance and patient outcomes.
Resumo:
AIM To describe structural covariance networks of gray matter volume (GMV) change in 28 patients with first-ever stroke to the primary sensorimotor cortices, and to investigate their relationship to hand function recovery and local GMV change. METHODS Tensor-based morphometry maps derived from high-resolution structural images were subject to principal component analyses to identify the networks. We calculated correlations between network expression and local GMV change, sensorimotor hand function and lesion volume. To verify which of the structural covariance networks of GMV change have a significant relationship to hand function, we performed an additional multivariate regression approach. RESULTS Expression of the second network, explaining 9.1% of variance, correlated with GMV increase in the medio-dorsal (md) thalamus and hand motor skill. Patients with positive expression coefficients were distinguished by significantly higher GMV increase of this structure during stroke recovery. Significant nodes of this network were located in md thalamus, dorsolateral prefrontal cortex, and higher order sensorimotor cortices. Parameter of hand function had a unique relationship to the network and depended on an interaction between network expression and lesion volume. Inversely, network expression is limited in patients with large lesion volumes. CONCLUSION Chronic phase of sensorimotor cortical stroke has been characterized by a large scale co-varying structural network in the ipsilesional hemisphere associated specifically with sensorimotor hand skill. Its expression is related to GMV increase of md thalamus, one constituent of the network, and correlated with the cortico-striato-thalamic loop involved in control of motor execution and higher order sensorimotor cortices. A close relation between expression of this network with degree of recovery might indicate reduced compensatory resources in the impaired subgroup.