5 resultados para Cais

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

he abundance and distribution of isotopes throughout the Solar System can be used to constrain the number and type of nucleosynthetic events that contributed material to the early nebula. Barium is particularly well suited to quantifying the degree of isotope heterogeneity in the Solar System because it comprises seven stable isotopes that were synthesized by three different nucleosynthetic processes (s-, r-, and p-processes), all of which contributed material to the Solar System. There is also potential contribution to 135Ba from short-lived radioisotope 135Cs, conclusive evidence for which is yet to be reported. Four Allende (CV3) Ca,Al-rich inclusions (CAI 1, CAI 2, CAI 4, CAI 5) and one Allende dark inclusion (DI) were analyzed for Ba isotope variability. Two CAIs (CAI 2 and CAI 5) display 135Ba excesses that are not accompanied by 137Ba anomalies. Calcium–aluminum-rich inclusion 1 displays a 135Ba excess that is possibly coupled with a 137Ba excess, and the remaining refractory inclusions (CAI 2 and DI) have terrestrial Ba isotope compositions. These Ba isotope data are presented in conjunction with published whole rock Ba isotope data from individual Allende CAIs. The enrichment in 135Ba and absence of coupled 137Ba excesses in CAI 2 and CAI 5 is interpreted to indicate that the anomalies are not purely nucleosynthetic in origin but also contain contributions (16–48 ppm) from the decay of short-lived 135Cs. The majority of Allende CAIs studied to date may also have similar contributions from 135Cs on the basis of higher than expected 135Ba excesses if the Ba isotope anomalies were purely nucleosynthetic in origin. The 135Ba anomalies appear not to be coupled with superchondritic Cs/Ba, which may imply that the contribution to 135Ba did not occur via in situ decay of live 135Cs. However, it is feasible that the CAIs had a superchondritic Cs/Ba during decay of 135Cs, but Cs was subsequently removed from the system during aqueous alteration on the parent body. An alternative scenario is the potential existence of a transient high-temperature reservoir having superchondritic Cs/Ba in the early Solar System while 135Cs was extant, which enabled a radiogenic 135Ba signature to develop in some early condensates. The nucleosynthetic source of 135Cs can be determined by reconciling the predicted astrophysical 135Cs abundance with its measured abundance in meteorites. Further, the currently accepted initial 135Cs/133Cs of the Solar System, [135Cs/133Cs]0, may be underestimated because the spread of Cs/Ba among samples is small and the range of excess 135Ba is limited thus leading to inaccuracies when estimating [135Cs/133Cs]0. If the initial meteoritic abundance of 135Cs was indeed higher than is currently thought, the most probable stellar source of short-lived radioisotopes was a nearby core-collapse supernova and/or the Wolf–Rayet wind driven by its progenitor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The publication record is a key component of a successful academic career in IS. Despite its importance, its definition - especially for junior researchers―remains unclear. Is it better to have one A-publication or three Bpublications? Does being the third author on an A-publication carry more weight than being the first author on a Bpublication? Is it better to publish with as few co-authors as possible to demonstrate ability for independent work or is publishing with others a sign of good teamwork and academic excellence? Faced with these uncertainties, young researchers increasingly question the choices they make regarding their publication strategy. If unaddressed, these issues are bound to interfere with the quality of the IS research and scholars’ job satisfaction. This article raises these concerns associated with a publication strategy for junior researchers and reports the views voiced by five academics at a panel session at the European Conference on Information Systems 2012. In particular, the following topics are discussed: quantity vs. quality, value of the first authorship, the “optimal” number of authors, and the issues of co-authorship with an academic supervisor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tungsten isotope compositions of magmatic iron meteorites yield ages of differentiation that are within ±2 Ma of the formation of CAIs, with the exception of IVB irons that plot to systematically less radiogenic compositions yielding erroneously old ages. Secondary neutron capture due to galactic cosmic ray (GCR) irradiation is known to lower the ε182W of iron meteorites, adequate correction of which requires a measure of neutron dosage which has not been available, thus far. The W, Os and Pt isotope systematics of 12 of the 13 known IVB iron meteorites were determined by MC-ICP-MS (W, Os, Pt) and TIMS (Os). On the same dissolutions that yield precise ε182W, stable Os and Pt isotopes were determined as in situ neutron dosimeters for empirical correction of the ubiquitous cosmic-ray induced burn-out of 182W in iron meteorites. The W isotope data reveal a main cluster with ε182W of ∼−3.6, but a much larger range than observed in previous studies including irons (Weaver Mountains and Warburton Range) that show essentially no cosmogenic effect on their ε182W. The IVB data exhibits resolvable negative anomalies in ε189Os (−0.6ε) and complementary ε190Os anomalies (+0.4ε) in Tlacotepec due to neutron capture on 189Os which has approximately the same neutron capture cross section as 182W, and captures neutrons to produce 190Os. The least irradiated IVB iron, Warburton Range, has ε189Os and ε190Os identical to terrestrial values. Similarly, Pt isotopes, which are presented as ε192Pt, ε194Pt and ε196Pt range from +4.4ε to +53ε, +1.54ε to −0.32ε and +0.73ε to −0.20ε, respectively, also identify Tlacotepec and Dumont as the most GCR-damaged samples. In W–Os and W–Pt isotope space, the correlated isotope data back-project toward a 0-epsilon value of ε192Pt, ε189Os and ε190Os from which a pre-GCR irradiation ε182W of −3.42±0.09 (2σ) is derived. This pre-GCR irradiation ε182W is within uncertainty of the currently accepted CAI initial ε182W. The Pt and Os isotope correlations in the IVB irons are in good agreement with a nuclear model for spherical irons undergoing GCR spallation, although this model over-predicts the change of ε182W by ∼2×, indicating a need for better W neutron capture cross section determinations. A nucleosynthetic effect in ε184W in these irons of −0.14±0.08 is confirmed, consistent with the presence of Mo and Ru isotope anomalies in IVB irons. The lack of a non-GCR Os isotope anomaly in these irons requires more complex explanations for the production of W, Ru and Mo anomalies than nebular heterogeneity in the distribution of s-process to r-process nuclides.