9 resultados para CaCo-2
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The single-layered gut epithelium represents the primary line of defense against environmental stressors; thereby monolayer integrity and tightness are essentially required to maintain gut health and function. To date only a few plant-derived phytochemicals have been described as affecting intestinal barrier function. We investigated the impact of 28 secondary plant compounds on the barrier function of intestinal epithelial CaCo-2/TC-7 cells via transepithelial electrical resistance (TEER) measurements. Apart from genistein, the compounds that had the biggest effect in the TEER measurements were biochanin A and prunetin. These isoflavones improved barrier tightness by 36 and 60%, respectively, compared to the untreated control. Furthermore, both isoflavones significantly attenuated TNFα-dependent barrier disruption, thereby maintaining a high barrier resistance comparable to nonstressed cells. In docking analyses exploring the putative interaction with the tyrosine kinase EGFR, these novel modulators of barrier tightness showed very similar values compared to the known tyrosine kinase inhibitor genistein. Both biochanin A and prunetin were also identified as potent reducers of NF-κB and ERK activation, zonula occludens 1 tyrosine phosphorylation, and metalloproteinase-mediated shedding activity, which may account for the barrier-improving ability of these isoflavones.
Resumo:
Background Interactions between CXCR4 and its ligand CXCL12 have been shown to be involved in cancer progression in colorectal cancer (CRC). We performed a comparative CXCL12/CXCR4 expression analysis and assessed the effect of external CXCL12 stimulation on migration of CRC cells without and with CXCR4 inhibition. Methods Expression of CXCL12/CXCR4 was assessed by quantitative real-time PCR, ELISA and immunohistochemistry in resection specimens of 50 CRC patients as well as in the corresponding normal tissues and in three human CRC cell lines with different metastatic potential (Caco-2, SW480 and HT-29). Migration assays were performed after stimulation with CXCL12 and CXCR4 was inhibited by siRNA and neutralizing antibodies. Results In CRC tissues CXCL12 was significantly down-regulated and CXCR4 was significantly up-regulated compared to the corresponding normal tissues. In cell lines CXCR4 was predominantly expressed in SW480 and less pronounced in HT-29 cells. CXCL12 was only detectable in Caco-2 cells. CXCL12 stimulation had no impact on Caco-2 cells but significantly increased migration of CXCR4 bearing SW480 and HT-29 cells. This effect was significantly abrogated by neutralizing anti-CXCR4 antibody as well as by CXCR4 siRNAs (P < 0.05). Conclusions CXCR4 expression was up-regulated in CRC and CXCL12 stimulation increased migration in CXCR4 bearing cell lines. Migration was inhibited by both neutralizing CXCR4 antibodies and CXCR4 siRNAs. Thus, the expression and functionality of CXCR4 might be associated with the metastatic potential of CRC cells and CXCL12/CXCR4 interactions might therefore constitute a promising target for specific treatment interventions.
Resumo:
As deregulation of miRNAs and chemokine CCL20 was shown to play a role in colorectal cancer (CRC) pathogenesis, we analyzed the functional interactions of candidate miRNAs with CCL20 mRNA. After target prediction software programs indicated a role for miR-21 in CCL20 regulation, we applied the luciferase reporter assay system to demonstrate that miR-21 functionally interacts with the 3'UTR of CCL20 mRNA and down-regulates CCL20 in miR-21 mimic transfected CRC cell lines (Caco-2, SW480 and SW620). Thus, regulation of CCL20 expression by miR-21 might be a regulatory mechanism involved in progression of CRC.
Resumo:
Meprinα, an astacin-type metalloprotease is overexpressed in colorectal cancer cells and is secreted in a non-polarized fashion, leading to the accumulation of meprinα in the tumor stroma. The transition from normal colonocytes to colorectal cancer correlates with increased meprinα activity at primary tumor sites. A role for meprinα in invasion and metastatic dissemination is supported by its pro-angiogenic and pro-migratory activity. In the present study, we provide evidence for a meprinα-mediated transactivation of the EGFR signaling pathway and suggest that this mechanism is involved in colorectal cancer progression. Using alkaline phosphatase-tagged EGFR ligands and an ELISA assay, we demonstrate that meprinα is capable of shedding epidermal growth factor (EGF) and transforming growth factor-α (TGFα) from the plasma membrane. Shedding was abrogated using actinonin, an inhibitor for meprinα. The physiological effects of meprinα-mediated shedding of EGF and TGFα were investigated with human colorectal adenocarcinoma cells (Caco-2). Proteolytically active meprinα leads to an increase in EGFR and ERK1/2 phosphorylation and subsequently enhances cell proliferation and migration. In conclusion, the implication of meprinα in the EGFR/MAPK signaling pathway indicates a role of meprinα in colorectal cancer progression.
Resumo:
Previous studies could demonstrate, that the naturally occuring polyphenol resveratrol inhibits cell growth of colon carcinoma cells at least in part by inhibition of protooncogene ornithine decarboxylase (ODC). The objective of this study was to provide several lines of evidence suggesting that the induction of ceramide synthesis is involved in this regulatory mechanisms. Cell growth was determined by BrdU incorporation and crystal violet staining. Ceramide concentrations were detected by HPLC-coupled mass-spectrometry. Protein levels were examined by Western blot analysis. ODC activity was assayed radiometrically measuring [(14)CO(2)]-liberation. A dominant-negative PPARgamma mutant was transfected in Caco-2 cells to suppress PPARgamma-mediated functions. Antiproliferative effects of resveratrol closely correlate with a dose-dependent increase of endogenous ceramides (p<0.001). Compared to controls the cell-permeable ceramide analogues C2- and C6-ceramide significantly inhibit ODC-activity (p<0.001) in colorectal cancer cells. C6-ceramide further diminished protein levels of protooncogenes c-myc (p<0.05) and ODC (p<0.01), which is strictly related to the ability of ceramides to inhibit cell growth in a time- and dose-dependent manner. These results were further confirmed using inhibitors of sphingolipid metabolism, where only co-incubation with a serine palmitoyltransferase (SPT) inhibitor could significantly counteract resveratrol-mediated actions. These data suggest that the induction of ceramide de novo biosynthesis but not hydrolysis of sphingomyelin is involved in resveratrol-mediated inhibition of ODC. In contrast to the regulation of catabolic spermidine/spermine acetyltransferase by resveratrol, inhibitory effects on ODC occur PPARgamma-independently, indicating independent pathways of resveratrol-action. Due to our findings resveratrol could show great chemopreventive and therapeutic potential in the treatment of colorectal cancers.
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) are the causative agent of hemolytic-uremic syndrome. In the first stage of the infection, EHEC interact with human enterocytes to modulate the innate immune response. Inducible NO synthase (iNOS)-derived NO is a critical mediator of the inflammatory response of the infected intestinal mucosa. We therefore aimed to analyze the role of EHEC on iNOS induction in human epithelial cell lines. In this regard, we show that EHEC down-regulate IFN-gamma-induced iNOS mRNA expression and NO production in Hct-8, Caco-2, and T84 cells. This inhibitory effect occurs through the decrease of STAT-1 activation. In parallel, we demonstrate that EHEC stimulate the rapid inducible expression of the gene hmox-1 that encodes for the enzyme heme oxygenase-1 (HO-1). Knock-down of hmox-1 gene expression by small interfering RNA or the blockade of HO-1 activity by zinc protoporphyrin IX abrogated the EHEC-dependent inhibition of STAT-1 activation and iNOS mRNA expression in activated human enterocytes. These results highlight a new strategy elaborated by EHEC to control the host innate immune response.
Resumo:
BACKGROUND: Meprin (EC 3.4.24.18), an astacin-like metalloprotease, is expressed in the epithelium of the intestine and kidney tubules and has been related to cancer, but the mechanistic links are unknown. METHODOLOGY/PRINCIPAL FINDINGS: We used MDCK and Caco-2 cells stably transfected with meprin alpha and or meprin beta to establish models of renal and intestinal epithelial cells expressing this protease at physiological levels. In both models E-cadherin was cleaved, producing a cell-associated 97-kDa E-cadherin fragment, which was enhanced upon activation of the meprin zymogen and reduced in the presence of a meprin inhibitor. The cleavage site was localized in the extracellular domain adjacent to the plasma membrane. In vitro assays with purified components showed that the 97-kDa fragment was specifically generated by meprin beta, but not by ADAM-10 or MMP-7. Concomitantly with E-cadherin cleavage and degradation of the E-cadherin cytoplasmic tail, the plaque proteins beta-catenin and plakoglobin were processed by an intracellular protease, whereas alpha-catenin, which does not bind directly to E-cadherin, remained intact. Using confocal microscopy, we observed a partial colocalization of meprin beta and E-cadherin at lateral membranes of incompletely polarized cells at preconfluent or early confluent stages. Meprin beta-expressing cells displayed a reduced strength of cell-cell contacts and a significantly lower tendency to form multicellular aggregates. CONCLUSIONS/SIGNIFICANCE: By identifying E-cadherin as a substrate for meprin beta in a cellular context, this study reveals a novel biological role of this protease in epithelial cells. Our results suggest a crucial role for meprin beta in the control of adhesiveness via cleavage of E-cadherin with potential implications in a wide range of biological processes including epithelial barrier function and cancer progression.
Resumo:
OBJECTIVE Several pathogenic roles attributed over the past two decades to either T helper (Th)1 or Th2 cells are increasingly becoming associated with interleukin (IL)-17 and most recently IL-9 signalling. However, the implication of IL-9 in IBD has not been addressed so far. DESIGN We investigated the expression of IL-9 and IL-9R by using peripheral blood, biopsies and surgical samples. We addressed the functional role of IL-9 signalling by analysis of downstream effector proteins. Using Caco-2 cell monolayers we followed the effect of IL-9 on wound healing. RESULTS IL-9 mRNA expression was significantly increased in inflamed samples from patients with UC as compared with controls. CD3(+) T cells were major IL-9-expressing cells and some polymorphonuclear leucocytes (PMN) also expressed IL-9. IL-9 was co-localised with the key Th9 transcription factors interferon regulatory factor 4 and PU.1. Systemically, IL-9 was abundantly produced by activated peripheral blood lymphocytes, whereas its receptor was overexpressed on gut resident and circulating PMN. IL-9 stimulation of the latter induced IL-8 production in a dose-dependent manner and rendered PMN resistant to apoptosis suggesting a functional role for IL-9R signalling in the propagation of gut inflammation. Furthermore, IL-9R was overexpressed on gut epithelial cells and IL-9 induced STAT5 activation in these cells. Moreover, IL-9 inhibited the growth of Caco-2 epithelial cell monolayers in wound healing experiments. CONCLUSIONS Our results provide evidence that IL-9 is predominantly involved in the pathogenesis of UC suggesting that targeting IL-9 might become a therapeutic option for patients with UC.
Resumo:
BACKGROUND Listeria (L.) monocytogenes causes fatal infections in many species including ruminants and humans. In ruminants, rhombencephalitis is the most prevalent form of listeriosis. Using multilocus variable number tandem repeat analysis (MLVA) we recently showed that L. monocytogenes isolates from ruminant rhombencephalitis cases are distributed over three genetic complexes (designated A, B and C). However, the majority of rhombencephalitis strains and virtually all those isolated from cattle cluster in MLVA complex A, indicating that strains of this complex may have increased neurotropism and neurovirulence. The aim of this study was to investigate whether ruminant rhombencephalitis strains have an increased ability to propagate in the bovine hippocampal brain-slice model and can be discriminated from strains of other sources. For this study, forty-seven strains were selected and assayed on brain-slice cultures, a bovine macrophage cell line (BoMac) and a human colorectal adenocarcinoma cell line (Caco-2). They were isolated from ruminant rhombencephalitis cases (n = 21) and other sources including the environment, food, human neurolisteriosis cases and ruminant/human non-encephalitic infection cases (n = 26). RESULTS All but one L. monocytogenes strain replicated in brain slices, irrespectively of the source of the isolate or MLVA complex. The replication of strains from MLVA complex A was increased in hippocampal brain-slice cultures compared to complex C. Immunofluorescence revealed that microglia are the main target cells for L. monocytogenes and that strains from MLVA complex A caused larger infection foci than strains from MLVA complex C. Additionally, they caused larger plaques in BoMac cells, but not CaCo-2 cells. CONCLUSIONS Our brain slice model data shows that all L. monocytogenes strains should be considered potentially neurovirulent. Secondly, encephalitis strains cannot be conclusively discriminated from non-encephalitis strains with the bovine organotypic brain slice model. The data indicates that MLVA complex A strains are particularly adept at establishing encephalitis possibly by virtue of their higher resistance to antibacterial defense mechanisms in microglia cells, the main target of L. monocytogenes.