4 resultados para CYTOTROPHOBLAST CELLS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol, phospholipids, and other lipophilic molecules across cellular membranes. Recent data provide evidence that ABCA1 plays an important role in placental function but the exact cellular sites of ABCA1 action in the placenta remain controversial. To clarify this issue, we analyzed the cellular and subcellular localization of ABCA1 with immunocytochemistry, immunofluorescence and subsequent confocal or immunofluorescence microscopy in different types of isolated primary placenta cells: cytotrophoblast cells, amnion epithelial cells, villous macrophages (Hofbauer cells), and mesenchymal cells isolated from chorionic membrane and placental villi. After 12 h of cultivation, primary cytotrophoblast cells showed intensive membrane and cytoplasmic staining for ABCA1. After 24 h, with progressive syncytium formation, ABCA1 staining intensity was markedly reduced and ABCA1 was dispersed in the cytoplasm of the forming syncytial layer. In amnion epithelial cells, placental macrophages and mesenchymal cells, ABCA1 was predominantly localized at the cell membrane and cytoplasmic compartments partially corresponding to the endoplasmic reticulum. In these cell types, the ABCA1 staining intensity was not dependent on the cultivation time. In conclusion, ABCA1 shows marked expression levels in diverse placental cell types. The multitopic localization of ABCA1 in diverse human placental cells not all directly involved in materno-fetal exchange suggests that this protein may not only participate in transplacental lipid transport but could have additional regulatory functions.
Resumo:
STUDY HYPOTHESIS Using optimized conditions, primary trophoblast cells isolated from human term placenta can develop a confluent monolayer in vitro, which morphologically and functionally resembles the microvilli structure found in vivo. STUDY FINDING We report the successful establishment of a confluent human primary trophoblast monolayer using pre-coated polycarbonate inserts, where the integrity and functionality was validated by cell morphology, biophysical features, cellular marker expression and secretion, and asymmetric glucose transport. WHAT IS KNOWN ALREADY Human trophoblast cells form the initial barrier between maternal and fetal blood to regulate materno-fetal exchange processes. Although the method for isolating pure human cytotrophoblast cells was developed almost 30 years ago, a functional in vitro model with primary trophoblasts forming a confluent monolayer is still lacking. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Human term cytotrophoblasts were isolated by enzymatic digestion and density gradient separation. The purity of the primary cells was evaluated by flow cytometry using the trophoblast-specific marker cytokeratin 7, and vimentin as an indicator for potentially contaminating cells. We screened different coating matrices for high cell viability to optimize the growth conditions for primary trophoblasts on polycarbonate inserts. During culture, cell confluency and polarity were monitored daily by determining transepithelial electrical resistance (TEER) and permeability properties of florescent dyes. The time course of syncytia-related gene expression and hCG secretion during syncytialization were assessed by quantitative RT-PCR and enzyme-linked immunosorbent assay, respectively. The morphology of cultured trophoblasts after 5 days was determined by light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Membrane makers were visualized using confocal microscopy. Additionally, glucose transport studies were performed on the polarized trophoblasts in the same system. MAIN RESULTS AND THE ROLE OF CHANCE During 5-day culture, the highly pure trophoblasts were cultured on inserts coated with reconstituted basement membrane matrix . They exhibited a confluent polarized monolayer, with a modest TEER and a size-dependent apparent permeability coefficient (Papp) to fluorescently labeled compounds (MW ∼400-70 000 Da). The syncytialization progress was characterized by gradually increasing mRNA levels of fusogen genes and elevating hCG secretion. SEM analyses confirmed a confluent trophoblast layer with numerous microvilli, and TEM revealed a monolayer with tight junctions. Immunocytochemistry on the confluent trophoblasts showed positivity for the cell-cell adhesion molecule E-cadherin, the tight junction protein 1 (ZO-1) and the membrane proteins ATP-binding cassette transporter A1 (ABCA1) and glucose transporter 1 (GLUT1). Applying this model to study the bidirectional transport of a non-metabolizable glucose derivative indicated a carrier-mediated placental glucose transport mechanism with asymmetric kinetics. LIMITATIONS, REASONS FOR CAUTION The current study is only focused on primary trophoblast cells isolated from healthy placentas delivered at term. It remains to be evaluated whether this system can be extended to pathological trophoblasts isolated from diverse gestational diseases. WIDER IMPLICATIONS OF THE FINDINGS These findings confirmed the physiological properties of the newly developed human trophoblast barrier, which can be applied to study the exchange of endobiotics and xenobiotics between the maternal and fetal compartment, as well as intracellular metabolism, paracellular contributions and regulatory mechanisms influencing the vectorial transport of molecules. LARGE-SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This study was supported by the Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Switzerland, and the Swiss National Science Foundation (grant no. 310030_149958, C.A.). All authors declare that their participation in the study did not involve factual or potential conflicts of interests.
Resumo:
Normal placentation involves the development of an utero-placental circulation following the migration of the extravillous cytotrophoblasts into the decidua and invasion of the spiral arteries, which are thereby transformed into large vessels of low resistance. Given the documented role of the receptor tyrosine kinase EphB4 and its ligand ephrin-B2 in the establishment of the embryonal vascular network, we hypothesized that these molecules are also instrumental in the development of the human placenta. Monitoring the expression during placental development revealed that in first trimester and term placentae both molecules are equally expressed at the RNA level. In contrast, the protein levels were significantly reduced during gestation. Immunohistochemistry revealed a distinct localization of the EphB4 and ephrin-B2 proteins. EphB4 was predominantly expressed in the villous syncytial trophoblast layer and in a subset of intravillous capillaries. Prominent expression was also observed in the extravillous cytotrophoblast giant cells. In contrast, ephrin-B2 expression was detected in the villous cytotrophoblast and syncytial trophoblast cell layers, as well as initially in all intravillous capillaries. Strong expression was also observed in extravillous anchoring cytotrophoblast cells. Hypoxia is a major inducer of placental development. In vitro studies employing trophoblast-derived cell lines revealed that predominantly ephrin-B2 expression is induced by hypoxia, however, in an Hif-1alpha independent manner. These experiments suggest that EphB4 and ephrin-B2 are instrumental in the establishment of a functional placental structure and of the utero-placental circulation.
Resumo:
Screening, Identification and Preliminary Investigation of Target Transporters in Pregnancy Pathologies. INTRODUCTION: Pre-eclampsia (PE), intrauterine growth restriction (IUGR) and gestational diabetes mellitus (GDM) are major sources of clinical morbidity and mortality in pregnant women worldwide. The mechanisms underlying these gestational diseases are complex and not yet fully understood, but one factor contributing to their development is impaired maternal-fetal nutrient transport. Therefore, we aimed to identify candidate membrane transporters involved in transplacental nutrient transfer associated with PE/IUGR or GDM. METHODS: Using in silico strategies, we analysed various gene expression data sets generated on different platforms focusing on solute carriers, ABC transporters and TRP channels in order to identify transporters that are differently expressed between patients and gestational age-matched controls. These bioinformatic analyses were combined with literature data to define a catalogue of target transporters that could be involved in the development of PE/IUGR or GDM. Transporters of interest were then analysed for gene expression using qRT-PCR in placental tissues of patients and controls. For validating the results on protein and functional level, we started to establish an in vitro assay using freshly isolated primary cytotrophoblast cells polarized on the Transwell® system. RESULTS: Using bioinformatics approaches, we initially identified 37 target membrane proteins which were mainly associated with the transport of amino acids, vitamins, and trace elements. At the current state of analysis, the amino acid transporters SLC7A7, SLC38A2, SLC38A5, and the thiamine transporter SLC19A3 showed significant differences in placental mRNA expression between controls and patients affected by PE and/or IUGR. Subsequent gene expression analysis in our in-house GDM placental tissue bank is still ongoing. CONCLUSIONS: Based on our in silico analyses, literature data and first follow-up in vitro validations, we were able to define potentially interesting candidate transporters implicated in PE/IUGR or GDM. To date, additional newly defined candidate targets are being analysed on mRNA level in PE/IUGR and GDM. Subsequent analyses on protein and functional level will reveal whether these targets could be of diagnostic or therapeutical interest in these pregnancy pathologies.