64 resultados para CYCLIC-NUCLEOTIDE PHOSPHODIESTERASES
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background Leishmania represent a complex of important human pathogens that belong to the systematic order of the kinetoplastida. They are transmitted between their human and mammalian hosts by different bloodsucking sandfly vectors. In their hosts, the Leishmania undergo several differentiation steps, and their coordination and optimization crucially depend on numerous interactions between the parasites and the physiological environment presented by the fly and human hosts. Little is still known about the signalling networks involved in these functions. In an attempt to better understand the role of cyclic nucleotide signalling in Leishmania differentiation and host-parasite interaction, we here present an initial study on the cyclic nucleotide-specific phosphodiesterases of Leishmania major. Results This paper presents the identification of three class I cyclic-nucleotide-specific phosphodiesterases (PDEs) from L. major, PDEs whose catalytic domains exhibit considerable sequence conservation with, among other, all eleven human PDE families. In contrast to other protozoa such as Dictyostelium, or fungi such as Saccharomyces cerevisiae, Candida ssp or Neurospora, no genes for class II PDEs were found in the Leishmania genomes. LmjPDEA contains a class I catalytic domain at the C-terminus of the polypeptide, with no other discernible functional domains elsewhere. LmjPDEB1 and LmjPDEB2 are coded for by closely related, tandemly linked genes on chromosome 15. Both PDEs contain two GAF domains in their N-terminal region, and their almost identical catalytic domains are located at the C-terminus of the polypeptide. LmjPDEA, LmjPDEB1 and LmjPDEB2 were further characterized by functional complementation in a PDE-deficient S. cerevisiae strain. All three enzymes conferred complementation, demonstrating that all three can hydrolyze cAMP. Recombinant LmjPDEB1 and LmjPDEB2 were shown to be cAMP-specific, with Km values in the low micromolar range. Several PDE inhibitors were found to be active against these PDEs in vitro, and to inhibit cell proliferation. Conclusion The genome of L. major contains only PDE genes that are predicted to code for class I PDEs, and none for class II PDEs. This is more similar to what is found in higher eukaryotes than it is to the situation in Dictyostelium or the fungi that concomitantly express class I and class II PDEs. Functional complementation demonstrated that LmjPDEA, LmjPDEB1 and LmjPDEB2 are capable of hydrolyzing cAMP. In vitro studies with recombinant LmjPDEB1 and LmjPDEB2 confirmed this, and they demonstrated that both are completely cAMP-specific. Both enzymes are inhibited by several commercially available PDE inhibitors. The observation that these inhibitors also interfere with cell growth in culture indicates that inhibition of the PDEs is fatal for the cell, suggesting an important role of cAMP signalling for the maintenance of cellular integrity and proliferation.
Resumo:
Cyclic nucleotide specific phosphodiesterases (PDEs) are pivotal regulators of cellular signaling. They are also important drug targets. Besides catalytic activity and substrate specificity, their subcellular localization and interaction with other cell components are also functionally important. In contrast to the mammalian PDEs, the significance of PDEs in protozoal pathogens remains mostly unknown. The genome of Trypanosoma brucei, the causative agent of human sleeping sickness, codes for five different PDEs. Two of these, TbrPDEB1 and TbrPDEB2, are closely similar, cAMP-specific PDEs containing two GAF-domains in their N-terminal regions. Despite their similarity, these two PDEs exhibit different subcellular localizations. TbrPDEB1 is located in the flagellum, whereas TbrPDEB2 is distributed between flagellum and cytoplasm. RNAi against the two mRNAs revealed that the two enzymes can complement each other but that a simultaneous ablation of both leads to cell death in bloodstream form trypanosomes. RNAi against TbrPDEB1 and TbrPDEB2 also functions in vivo where it completely prevents infection and eliminates ongoing infections. Our data demonstrate that TbrPDEB1 and TbrPDEB2 are essential for virulence, making them valuable potential targets for new PDE-inhibitor based trypanocidal drugs. Furthermore, they are compatible with the notion that the flagellum of T. brucei is an important site of cAMP signaling.--Oberholzer, M., Marti, G., Baresic, M., Kunz, S., Hemphill, A., Seebeck, T. The Trypanosoma brucei cAMP phosphodiesterases TbrPDEB1 and TbrPDEB2: flagellar enzymes that are essential for parasite virulence.
Resumo:
This study investigated the excitability and accommodative properties of low-threshold human motor axons to test whether these motor axons have greater expression of the persistent Na(+) conductance, I(NaP). Computer-controlled threshold tracking was used to study 22 single motor units and the data were compared with compound motor potentials of various amplitudes recorded in the same experimental session. Detailed comparisons were made between the single units and compound potentials that were 40% or 5% of maximal amplitude, the former because this is the compound potential size used in most threshold tracking studies of axonal excitability, the latter because this is the compound potential most likely to be composed entirely of motor axons with low thresholds to electrical recruitment. Measurements were made of the strength-duration relationship, threshold electrotonus, current-voltage relationship, recovery cycle and latent addition. The findings did not support a difference in I(NaP). Instead they pointed to greater activity of the hyperpolarization-activated inwardly rectifying current (I(h)) as the basis for low threshold to electrical recruitment in human motor axons. Computer modelling confirmed this finding, with a doubling of the hyperpolarization-activated conductance proving the best single parameter adjustment to fit the experimental data. We suggest that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel(s) expressed on human motor axons may be active at rest and contribute to resting membrane potential.
Resumo:
The "Trond" protocol of nerve excitability tests has been used widely to assess axonal function in peripheral nerve. In this study, the routine Trond protocol was expanded to refine assessment of cAMP-dependent, hyperpolarization-activated current (I(h)) activity. I(h) activity is generated by hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels in response to hyperpolarization. It limits activity-dependent hyperpolarization, contributes to neuronal automaticity, and is implicated in chronic pain states. Published data regarding I(h) activity in motor nerve are scant. We used additional strong, prolonged hyperpolarizing conditioning stimuli in the threshold electrotonus component of the Trond protocol to demonstrate the time-course of activation of I(h) in motor axons. Fifteen healthy volunteers were tested on four occasions during 1 week. I(h) action was revealed in the threshold electrotonus by the limiting and often reversal, after about 100 ms, of the threshold increase caused by strong hyperpolarizing currents. Statistical analysis by repeated-measures analysis of variance enabled confidence limits to be established for variation between subjects and within subjects. The results demonstrate that, of all the excitability parameters, those dependent on I(h) were the most characteristic of an individual, because variance between subjects was more than four times the variance within subjects. This study demonstrates a reliable method for in vivo assessment of I(h,) and also serves to document the normal variability in nerve excitability properties within subjects.
Resumo:
Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.
Resumo:
Neuropathic pain is caused by long-term modifications of neuronal function in the peripheral nervous system, the spinal cord, and supraspinal areas. Although functional changes in the forebrain are thought to contribute to the development of persistent pain, their significance and precise subcellular nature remain unexplored. Using somatic and dendritic whole-cell patch-clamp recordings from neurons in the anterior cingulate cortex, we discovered that sciatic nerve injury caused an activity-dependent dysfunction of hyperpolarization-activated cyclic nucleotide-regulated (HCN) channels in the dendrites of layer 5 pyramidal neurons resulting in enhanced integration of excitatory postsynaptic inputs and increased neuronal firing. Specific activation of the serotonin receptor type 7 (5-HT7R) alleviated the lesion-induced pathology by increasing HCN channel function, restoring normal dendritic integration, and reducing mechanical pain hypersensitivity in nerve-injured animals in vivo. Thus, serotoninergic neuromodulation at the forebrain level can reverse the dendritic dysfunction induced by neuropathic pain and may represent a potential therapeutical target.
Resumo:
Depending on their developmental stage in the life cycle, malaria parasites develop within or outside host cells, and in extremely diverse contexts such as the vertebrate liver and blood circulation, or the insect midgut and hemocoel. Cellular and molecular mechanisms enabling the parasite to sense and respond to the intra- and the extra-cellular environments are therefore key elements for the proliferation and transmission of Plasmodium, and therefore are, from a public health perspective, strategic targets in the fight against this deadly disease. The MALSIG consortium, which was initiated in February 2009, was designed with the primary objective to integrate research ongoing in Europe and India on i) the properties of Plasmodium signalling molecules, and ii) developmental processes occurring at various points of the parasite life cycle. On one hand, functional studies of individual genes and their products in Plasmodium falciparum (and in the technically more manageable rodent model Plasmodium berghei) are providing information on parasite protein kinases and phosphatases, and of the molecules governing cyclic nucleotide metabolism and calcium signalling. On the other hand, cellular and molecular studies are elucidating key steps of parasite development such as merozoite invasion and egress in blood and liver parasite stages, control of DNA replication in asexual and sexual development, membrane dynamics and trafficking, production of gametocytes in the vertebrate host and further parasite development in the mosquito. This article, which synthetically reviews such signalling molecules and cellular processes, aims to provide a glimpse of the global frame in which the activities of the MALSIG consortium will develop over the next three years.
Resumo:
To test the hypothesis that the pericellular fibronectin matrix is involved in mechanotransduction, we compared the response of normal and fibronectin-deficient mouse fibroblasts to cyclic substrate strain. Normal fibroblasts seeded on vitronectin in fibronectin-depleted medium deposited their own fibronectin matrix. In cultures exposed to cyclic strain, RhoA was activated, actin-stress fibers became more prominent, MAL/MKL1 shuttled to the nucleus, and mRNA encoding tenascin-C was induced. By contrast, these RhoA-dependent responses to cyclic strain were suppressed in fibronectin knockdown or knockout fibroblasts grown under identical conditions. On vitronectin substrate, fibronectin-deficient cells lacked fibrillar adhesions containing alpha5 integrin. However, when fibronectin-deficient fibroblasts were plated on exogenous fibronectin, their defects in adhesions and mechanotransduction were restored. Studies with fragments indicated that both the RGD-synergy site and the adjacent heparin-binding region of fibronectin were required for full activity in mechanotransduction, but not its ability to self-assemble. In contrast to RhoA-mediated responses, activation of Erk1/2 and PKB/Akt by cyclic strain was not affected in fibronectin-deficient cells. Our results indicate that pericellular fibronectin secreted by normal fibroblasts is a necessary component of the strain-sensing machinery. Supporting this hypothesis, induction of cellular tenascin-C by cyclic strain was suppressed by addition of exogenous tenascin-C, which interferes with fibronectin-mediated cell spreading.
Resumo:
High arterial partial oxygen pressure (Pao(2)) oscillations within the respiratory cycle were described recently in experimental acute lung injury. This phenomenon has been related to cyclic recruitment of atelectasis and varying pulmonary shunt fractions. Noninvasive detection of Spo(2) (oxygen saturation measured by pulse oximetry) as an indicator of cyclic collapse of atelectasis, instead of recording Pao(2) oscillations, could be of clinical interest in critical care. Spo(2) oscillations were recorded continuously in three different cases of lung damage to demonstrate the technical feasibility of this approach. To deduce Pao(2) from Spo(2), a mathematical model of the hemoglobin dissociation curve including left and right shifts was derived from the literature and adapted to the dynamic changes of oxygenation. Calculated Pao(2) amplitudes (derived from Spo(2) measurements) were compared to simultaneously measured fast changes of Pao(2), using a current standard method (fluorescence quenching of ruthenium). Peripheral hemoglobin saturation was capable to capture changes of Spo(2) within each respiratory cycle. For the first time, Spo(2) oscillations due to cyclic recruitment of atelectasis within a respiratory cycle were determined by photoplethysmography, a technology that can be readily applied noninvasively in clinical routine. A mathematic model to calculate the respective Pao(2) changes was developed and its applicability tested.
Resumo:
Background. Metabolic complications, including cardiovascular events and diabetes mellitus (DM), are a major long-term concern in human immunodeficienc virus (HIV)-infected individuals. Recent genome-wide association studies have reliably associated multiple single nucleotide polymorphisms (SNPs) to DM in the general population. Methods. We evaluated the contribution of 22 SNPs identifie in genome-wide association studies and of longitudinally measured clinical factors to DM. We genotyped all 94 white participants in the Swiss HIV Cohort Study who developed DM from 1 January 1999 through 31 August 2009 and 550 participants without DM. Analyses were based on 6054 person-years of follow-up and 13,922 measurements of plasma glucose. Results. The contribution to DM risk explained by SNPs (14% of DM variability) was larger than the contribution to DM risk explained by current or cumulative exposure to different antiretroviral therapy combinations (3% of DM variability). Participants with the most unfavorable genetic score (representing 12% and 19% of the study population, respectively, when applying 2 different genetic scores) had incidence rate ratios for DM of 3.80 (95% confidenc interval [CI], 2.05–7.06) and 2.74 (95% CI, 1.53–4.88), respectively, compared with participants with a favorable genetic score. However, addition of genetic data to clinical risk factors that included body mass index only slightly improved DM prediction. Conclusions. In white HIV-infected persons treated with antiretroviral therapy, the DM effect of genetic variants was larger than the potential toxic effects of antiretroviral therapy. SNPs contributed significantl to DM risk, but their addition to a clinical model improved DM prediction only slightly, similar to studies in the general population.