2 resultados para CURSO NORMAL SUPERIOR
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Ultrasmall superparamagnetic iron oxide (USPIO) particles are promising contrast media, especially for molecular and cellular imaging besides lymph node staging owing to their superior NMR efficacy, macrophage uptake and lymphotropic properties. The goal of the present prospective clinical work was to validate quantification of signal decrease on high-resolution T(2)-weighted MR sequences before and 24-36 h after USPIO administration for accurate differentiation between benign and malignant normal-sized pelvic lymph nodes. Fifty-eight patients with bladder or prostate cancer were examined on a 3 T MR unit and their respective lymph node signal intensities (SI), signal-to-noise (SNR) and contrast-to-noise (CNR) were determined on pre- and post-contrast 3D T(2)-weighted turbo spin echo (TSE) images. Based on histology and/or localization, USPIO-uptake-related SI/SNR decrease of benign vs malignant and pelvic vs inguinal lymph nodes was compared. Out of 2182 resected lymph nodes 366 were selected for MRI post-processing. Benign pelvic lymph nodes showed a significantly higher SI/SNR decrease compared with malignant nodes (p < 0.0001). Inguinal lymph nodes in comparison to pelvic lymph nodes presented a reduced SI/SNR decrease (p < 0.0001). CNR did not differ significantly between benign and malignant lymph nodes. The receiver operating curve analysis yielded an area under the curve of 0.96, and the point with optimal accuracy was found at a threshold value of 13.5% SNR decrease. Overlap of SI and SNR changes between benign and malignant lymph nodes were attributed to partial voluming, lipomatosis, histiocytosis or focal lymphoreticular hyperplasia. USPIO-enhanced MRI improves the diagnostic ability of lymph node staging in normal-sized lymph nodes, although some overlap of SI/SNR-changes remained. Quantification of USPIO-dependent SNR decrease will enable the validation of this promising technique with the final goal of improving and individualizing patient care.
Resumo:
BACKGROUND Gamma irradiation is currently the standard care to avoid transfusion-associated graft-versus-host disease. Guidelines on gamma irradiation of blood components state that platelets (PLTs) can be irradiated at any stage in their 5-day storage and can thereafter be stored up to their normal shelf life of 5 days after collection. In this study, we explored whether the timing of irradiation has an effect on transfusion efficacy of apheresis PLT concentrates (APCs). METHODS Based on the 1-hour percent PLT recovery (PPR1h), transfusion efficacy of 1,000 eligible APCs transfused to 144 children were evaluated retrospectively. PPR1h was compared in transfused APCs irradiated at the day of transfusion and APCs irradiated in advance. RESULTS In univariate analysis, transfusion efficacy of APCs irradiated in advance was significantly lower than that of APCs irradiated at the day of transfusion (mean PPR1h 27.7 vs. 35.0%; p = 0.007). This was confirmed in multivariate analysis (p = 0.030). Compared to non-irradiated APCs, transfusion efficacy of APCs irradiated at the day of transfusion was not significantly inferior (mean difference -2.8%; 95% CI -6.1 to 0.5%; p = 0.092), but APCs irradiated in advance were clearly less efficient (mean difference -8.1%; 95% CI -12.2 to -4.0%; p < 0.001). CONCLUSION Our data strongly support that APCs should not be irradiated in advance, 1.e., ≥24 h before transfusion.