52 resultados para CORTICOMOTOR EXCITABILITY

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-invasive excitability studies of motor axons in patients with amyotrophic lateral sclerosis (ALS) have revealed a changing pattern of abnormal membrane properties with disease progression, but the heterogeneity of the changes has made it difficult to relate them to pathophysiology. The SOD1(G93A) mouse model of ALS displays more synchronous motoneuron pathology. Multiple excitability measures of caudal and sciatic nerves in mutant and wild-type mice were compared before onset of signs and during disease progression (4-19 weeks), and they were related to changes in muscle fiber histochemistry. Excitability differences indicated a modest membrane depolarization in SOD1(G93A) axons at about the time of symptom onset (8 weeks), possibly due to deficient energy supply. Previously described excitability changes in ALS patients, suggesting altered sodium and potassium conductances, were not seen in the mice. This suggests that those changes relate to features of the human disease that are not well represented in the animal model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Episodic ataxia type 1 is a neuronal channelopathy caused by mutations in the KCNA1 gene encoding the fast K(+) channel subunit K(v)1.1. Episodic ataxia type 1 presents with brief episodes of cerebellar dysfunction and persistent neuromyotonia and is associated with an increased incidence of epilepsy. In myelinated peripheral nerve, K(v)1.1 is highly expressed in the juxtaparanodal axon, where potassium channels limit the depolarizing afterpotential and the effects of depolarizing currents. Axonal excitability studies were performed on patients with genetically confirmed episodic ataxia type 1 to characterize the effects of K(v)1.1 dysfunction on motor axons in vivo. The median nerve was stimulated at the wrist and compound muscle action potentials were recorded from abductor pollicis brevis. Threshold tracking techniques were used to record strength-duration time constant, threshold electrotonus, current/threshold relationship and the recovery cycle. Recordings from 20 patients from eight kindreds with different KCNA1 point mutations were compared with those from 30 normal controls. All 20 patients had a history of episodic ataxia and 19 had neuromyotonia. All patients had similar, distinctive abnormalities: superexcitability was on average 100% higher in the patients than in controls (P < 0.00001) and, in threshold electrotonus, the increase in excitability due to a depolarizing current (20% of threshold) was 31% higher (P < 0.00001). Using these two parameters, the patients with episodic ataxia type 1 and controls could be clearly separated into two non-overlapping groups. Differences between the different KCNA1 mutations were not statistically significant. Studies of nerve excitability can identify K(v)1.1 dysfunction in patients with episodic ataxia type 1. The simple 15 min test may be useful in diagnosis, since it can differentiate patients with episodic ataxia type 1 from normal controls with high sensitivity and specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various factors, including maturity, have been shown to influence peripheral nerve excitability measures, but little is known about differences in these properties between axons with different stimulation thresholds. Multiple nerve excitability tests were performed on the caudal motor axons of immature and mature female rats, recording from tail muscles at three target compound muscle action potential (CMAP) levels: 10%, 40% ("standard" level), and 60% of the maximum CMAP amplitude. Compared to lower target levels, axons at high target levels have the following characteristics: lower strength-duration time constant, less threshold reduction during depolarizing currents and greater threshold increase to hyperpolarizing currents, most notably to long hyperpolarizing currents in mature rats. Threshold-dependent effects on peripheral nerve excitability properties depend on the maturation stage, especially inward rectification (Ih), which becomes inversely related to threshold level. Performing nerve excitability tests at different target levels is useful in understanding the variation in membrane properties between different axons within a nerve. Because of the threshold effects on nerve excitability and the possibility of increased variability between axons and altered electric recruitment order in disease conditions, excitability parameters measured only at the "standard" target level should be interpreted with caution, especially the responses to hyperpolarizing currents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the excitability and recruitment of spinal motoneurons in human sleep. The main objective was to assess whether supraspinal inhibition affects the different subpopulations of the compound spinal motoneuron pool in the same way or rather in a selective fashion in the various sleep stages. To this end, we studied F-conduction velocities (FCV) and F-tacheodispersion alongside F-amplitudes and F-persistence in 22 healthy subjects in sleep stages N2, N3 (slow-wave sleep), REM and in wakefulness. Stimuli were delivered on the ulnar nerve, and F-waves were recorded from the first dorsal interosseus muscle. Repeated sets of stimuli were stored to obtain at least 15 F-waves for each state of vigilance. F-tacheodispersion was calculated based on FCVs using the modified Kimura formula. Confirming the only previous study, excitability of spinal motoneurons was generally decreased in all sleep stages compared with wakefulness as indicated by significantly reduced F-persistence and F-amplitudes. More importantly, F-tacheodispersion showed a narrowed range of FCV in all sleep stages, most prominently in REM. In non-REM, this narrowed range was associated with a shift towards significantly decreased maximal FCV and mean FCV as well as with a trend towards lower minimal FCV. In REM, the lowering of mean FCV was even more pronounced, but contrary to non-REM sleep without a shift of minimal and maximal FCV. Variations in F-tacheodispersion between sleep stages suggest that different supraspinal inhibitory neuronal circuits acting on the spinal motoneuron pool may contribute to muscle hypotonia in human non-REM sleep and to atonia in REM sleep.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients in intensive care units frequently suffer muscle weakness and atrophy due to critical illness polyneuropathy (CIP), an axonal neuropathy associated with systemic inflammatory response syndrome and multiple organ failure. CIP is a frequent and serious complication of intensive care that delays weaning from mechanical ventilation and increases mortality. The pathogenesis of CIP is not well understood and no specific therapy is available. The aim of this project was to use nerve excitability testing to investigate the changes in axonal membrane properties occurring in CIP. Ten patients (aged 37-76 years; 7 males, 3 females) were studied with electrophysiologically proven CIP. The median nerve was stimulated at the wrist and compound action potentials were recorded from abductor pollicis brevis muscle. Strength-duration time constant, threshold electrotonus, current-threshold relationship and recovery cycle (refractoriness, superexcitability and late subexcitability) were recorded using a recently described protocol. In eight patients a follow-up investigation was performed. All patients underwent clinical examination and laboratory investigations. Compared with age-matched normal controls (20 subjects; aged 38-79 years; 7 males, 13 females), CIP patients exhibited reduced superexcitability at 7 ms, from -22.3 +/- 1.6% to -7.6 +/- 3.1% (mean +/- SE, P approximately 0.0001) and increased accommodation to depolarizing (P < 0.01) and hyperpolarizing currents (P < 0.01), indicating membrane depolarization. Superexcitability was reduced both in patients with renal failure and without renal failure. In the former, superexcitability correlated with serum potassium (R = 0.88), and late subexcitability was also reduced (as also occurs owing to hyperkalaemia in patients with chronic renal failure). In patients without renal failure, late subexcitability was normal, and the signs of membrane depolarization correlated with raised serum bicarbonate and base excess, indicating compensated respiratory acidosis. It is inferred that motor axons in these CIP patients are depolarized, in part because of raised extracellular potassium, and in part because of hypoperfusion. The chronic membrane depolarization may contribute to the development of neuropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that peripheral trauma such as soft tissue injuries can trigger dystonia, although little is known about the underlying mechanism. Because peripheral injury only rarely appears to elicit dystonia, a predisposing vulnerability in cortical motor areas might play a role. Using single and paired-pulse pulse transcranial magnetic stimulation, we evaluated motor cortex excitability of a hand muscle in a patient with peripherally induced foot dystonia, in her brother with craniocervical dystonia, and in her unaffected sister, and compared their results to those from a group of normal subjects. In the patient with peripherally induced dystonia, we found a paradoxical intracortical facilitation at short interstimulus intervals of 3 and 5 milliseconds, at which regular intracortical inhibition (ICI) occurred in healthy subjects. These findings suggest that the foot dystonia may have been precipitated as the result of a preexisting abnormality of motor cortex excitability. Furthermore, the abnormality of ICI in her brother and sister indicates that altered motor excitability may be a hereditary predisposition. The study demonstrates that the paired-pulse technique is a useful tool to assess individual vulnerability, which can be particularly relevant when the causal association between trauma and dystonia is less evident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaptic plasticity rules change during development: while hippocampal synapses can be potentiated by a single action potential pairing protocol in young neurons, mature neurons require burst firing to induce synaptic potentiation. An essential component for spike timing-dependent plasticity is the backpropagating action potential (BAP). BAP along the dendrites can be modulated by morphology and ion channel composition, both of which change during late postnatal development. However it is unclear whether these dendritic changes can explain the developmental changes in synaptic plasticity induction rules. Here, we show that tonic GABAergic inhibition regulates dendritic action potential backpropagation in adolescent but not pre-adolescent CA1 pyramidal neurons. These developmental changes in tonic inhibition also altered the induction threshold for spike timing-dependent plasticity in adolescent neurons. This GABAergic regulatory effect upon backpropagation is restricted to distal regions of apical dendrites (>200 μm) and mediated by α5-containing GABA(A) receptors. Direct dendritic recordings demonstrate α5-mediated tonic GABA(A) currents in adolescent neurons which can modulate backpropagating action potentials. These developmental modulations in dendritic excitability could not be explained by concurrent changes in dendritic morphology. To explain our data, model simulations propose a distally-increasing or localized distal expression of dendritic α5 tonic inhibition in mature neurons. Overall, our results demonstrate that dendritic integration and plasticity in more mature dendrites are significantly altered by tonic α5 inhibition in a dendritic region-specific and developmentally-regulated manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperkalemia is an important cause of membrane depolarization in renal failure. A recent theoretical model of axonal excitability explains the effects of potassium on threshold electrotonus, but predicts changes in superexcitability in the opposite direction to those observed. To resolve this contradiction we assessed the relationship between serum potassium and motor axon excitability properties in 38 volunteers with normal potassium levels. Most threshold electrotonus measures were strongly correlated with potassium, and superexcitability decreased at higher potassium levels (P = 0.016), contrary to the existing model. Improved modelling of potassium effects was achieved by making the potassium currents obey the constant-field theory, and by making the potassium permeabilities proportional to external potassium, as has been observed in vitro. This new model also accounted well for the changes in superexcitability and other excitability measures previously reported in renal failure. These results demonstrate the importance of taking potassium levels into account when assessing axonal membrane dysfunction by excitability testing, and provide evidence that potassium currents are activated by external potassium in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delaying clinical disease onset would greatly reduce neurodegenerative disease burden, but the mechanisms influencing early preclinical progression are poorly understood. Here, we show that in mouse models of familial motoneuron (MN) disease, SOD1 mutants specifically render vulnerable MNs dependent on endogenous neuroprotection signaling involving excitability and mammalian target of rapamycin (mTOR). The most vulnerable low-excitability FF MNs already exhibited evidence of pathology and endogenous neuroprotection recruitment early postnatally. Enhancing MN excitability promoted MN neuroprotection and reversed misfolded SOD1 (misfSOD1) accumulation and MN pathology, whereas reducing MN excitability augmented misfSOD1 accumulation and accelerated disease. Inhibiting metabotropic cholinergic signaling onto MNs reduced ER stress, but enhanced misfSOD1 accumulation and prevented mTOR activation in alpha-MNs. Modulating excitability and/or alpha-MN mTOR activity had comparable effects on the progression rates of motor dysfunction, denervation, and death. Therefore, excitability and mTOR are key endogenous neuroprotection mechanisms in motoneurons to counteract clinically important disease progression in ALS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-gated sodium channels (Nav) are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the Nav. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the Nav by shifting the voltage-dependence of steady state activation toward more negative potentials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the excitability and accommodative properties of low-threshold human motor axons to test whether these motor axons have greater expression of the persistent Na(+) conductance, I(NaP). Computer-controlled threshold tracking was used to study 22 single motor units and the data were compared with compound motor potentials of various amplitudes recorded in the same experimental session. Detailed comparisons were made between the single units and compound potentials that were 40% or 5% of maximal amplitude, the former because this is the compound potential size used in most threshold tracking studies of axonal excitability, the latter because this is the compound potential most likely to be composed entirely of motor axons with low thresholds to electrical recruitment. Measurements were made of the strength-duration relationship, threshold electrotonus, current-voltage relationship, recovery cycle and latent addition. The findings did not support a difference in I(NaP). Instead they pointed to greater activity of the hyperpolarization-activated inwardly rectifying current (I(h)) as the basis for low threshold to electrical recruitment in human motor axons. Computer modelling confirmed this finding, with a doubling of the hyperpolarization-activated conductance proving the best single parameter adjustment to fit the experimental data. We suggest that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel(s) expressed on human motor axons may be active at rest and contribute to resting membrane potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The "Trond" protocol of nerve excitability tests has been used widely to assess axonal function in peripheral nerve. In this study, the routine Trond protocol was expanded to refine assessment of cAMP-dependent, hyperpolarization-activated current (I(h)) activity. I(h) activity is generated by hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channels in response to hyperpolarization. It limits activity-dependent hyperpolarization, contributes to neuronal automaticity, and is implicated in chronic pain states. Published data regarding I(h) activity in motor nerve are scant. We used additional strong, prolonged hyperpolarizing conditioning stimuli in the threshold electrotonus component of the Trond protocol to demonstrate the time-course of activation of I(h) in motor axons. Fifteen healthy volunteers were tested on four occasions during 1 week. I(h) action was revealed in the threshold electrotonus by the limiting and often reversal, after about 100 ms, of the threshold increase caused by strong hyperpolarizing currents. Statistical analysis by repeated-measures analysis of variance enabled confidence limits to be established for variation between subjects and within subjects. The results demonstrate that, of all the excitability parameters, those dependent on I(h) were the most characteristic of an individual, because variance between subjects was more than four times the variance within subjects. This study demonstrates a reliable method for in vivo assessment of I(h,) and also serves to document the normal variability in nerve excitability properties within subjects.