4 resultados para CORE PARTICLE

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The aim of this study was to assess the effects of a series of different surface coated quantum dots (QDs) (organic, carboxylated [COOH] and amino [NH(2)] polytethylene glycol [PEG]) on J774.A1 macrophage cell viability and to further determine which part of the QDs cause such toxicity. Cytotoxic examination (MTT assay and LDH release) showed organic QDs to induce significant cytotoxicity up to 48 h, even at a low particle concentration (20 nM), whilst both COOH and NH(2) (PEG) QDs caused reduced cell viability and cell membrane permeability after 24 and 48 h exposure at 80 nM. Subsequent analysis of the elements that constitute the QD core, core/shell and (organic QD) surface coating showed that the surface coating drives QD toxicity. Elemental analysis (ICP-AES) after 48 h, however, also observed a release of Cd from organic QDs. In conclusion, both the specific surface coating and core material can have a significant impact on QD toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Mt. Everest ice core spanning 1860–2000 AD and analyzed at high resolution for black carbon (BC) using a Single Particle Soot Photometer (SP2) demonstrates strong seasonality, with peak concentrations during the winter-spring, and low concentrations during the summer monsoon season. BC concentrations from 1975–2000 relative to 1860–1975 have increased approximately threefold, indicating that BC from anthropogenic sources is being transported to high elevation regions of the Himalaya. The timing of the increase in BC is consistent with BC emission inventory data from South Asia and the Middle East, however since 1990 the ice core BC record does not indicate continually increasing BC concentrations. The Everest BC and dust records provide information about absorbing impurities that can contribute to glacier melt by reducing the albedo of snow and ice. There is no increasing trend in dust concentrations since 1860, and estimated surface radiative forcing due to BC in snow exceeds that of dust in snow. This suggests that a reduction in BC emissions may be an effective means to reduce the effect of absorbing impurities on snow albedo and melt, which affects Himalayan glaciers and the availability of water resources in major Asian rivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Carrington Event of 1859 is considered to be among the largest space weather events of the last 150 years. We show that only one out of 14 well-resolved ice core records from Greenland and Antarctica has a nitrate spike dated to 1859. No sharp spikes are observed in the Antarctic cores studied here. In Greenland numerous spikes are observed in the 40 years surrounding 1859, but where other chemistry was measured, all large spikes have the unequivocal signal, including co-located spikes in ammonium, formate, black carbon and vanillic acid, of biomass burning plumes. It seems certain that most spikes in an earlier core, including that claimed for 1859, are also due to biomass burning plumes, and not to solar energetic particle (SEP) events. We conclude that an event as large as the Carrington Event did not leave an observable, widespread imprint in nitrate in polar ice. Nitrate spikes cannot be used to derive the statistics of SEPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the chemical composition of particles present along Greenland’s North Greenland Eemian Ice Drilling (NEEM) ice core, back to 110,000 years before present. Insoluble and soluble particles larger than 0.45 μm were extracted from the ice core by ice sublimation, and their chemical composition was analyzed using scanning electron microscope and energy dispersive X-ray spectroscopy and micro-Raman spectroscopy. We show that the dominant insoluble components are silicates, whereas NaCl, Na₂SO₄, CaSO ₄, and CaCO₃ represent major soluble salts. For the first time, particles of CaMg(CO₃)₂ and Ca(NO₃)₂ 4H₂O are identified in a Greenland ice core. The chemical speciation of salts varies with past climatic conditions. Whereas the fraction of Na salts (NaCl + Na₂SO₄) exceeds that of Ca salts (CaSO₄+ CaCO₃) during the Holocene (0.6–11.7 kyr B.P.), the two fractions are similar during the Bølling-Allerød period (12.9–14.6 kyr B.P.). During cold climate such as over the Younger Dryas (12.0–12.6 kyr B.P.) and the Last Glacial Maximum (15.0–26.9 kyr B.P.), the fraction of Ca salts exceeds that of Na salts, showing that the most abundant ion generally controls the salt budget in each period. High-resolution analyses reveal changing particle compositions: those in Holocene ice show seasonal changes, and those in LGM ice show a difference between cloudy bands and clear layers, which again can be largely explained by the availability of ionic components in the atmospheric aerosol body of air masses reaching Greenland.