191 resultados para CONE BEAM COMPUTED TOMOGRAPHY
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES: To determine (1) the optimal sites for mini-implant placement in the maxilla and the mandible based on dimensional mapping of the interradicular spaces and cortical bone thickness and (2) The effect of age and sex on the studied anatomic measurements. MATERIAL AND METHODS: The cone beam computed tomography images of 100 patients (46 males, 54 females) divided into two age groups (13-18 years), and (19-27 years) were used. The following interradicular measurements were performed: (1) Buccolingual bone thickness; (2) Mesiodistal spaces both buccally and palatally/lingually; and (3) Buccal and palatal/lingual cortical thicknesses. RESULTS: In the maxilla, the highest buccolingual thickness existed between first and second molars; the highest mesiodistal buccal/palatal distances were between the second premolar and the first molar. The highest buccal cortical thickness was between the first and second premolars. The highest palatal cortical thickness was between central and lateral incisors. In the mandible, the highest buccolingual and buccal cortical thicknesses were between the first and second molars. The highest mesiodistal buccal distance was between the second premolar and the first molar. The highest mesiodistal lingual distance was between the first and second premolars. The highest lingual cortical thickness was between the canine and the first premolar. The males and the older age group had significantly higher buccolingual, buccal, and palatal cortical thicknesses at specific sites and levels in the maxilla and the mandible. CONCLUSIONS: A clinical guideline for optimal sites for mini-implant placement is suggested. Sex and age affected the anatomic measurements in certain areas in the maxilla and the mandible.
Resumo:
To analyze the dimensions and anatomic characteristics of the nasopalatine canal and the corresponding buccal bone plate of the alveolar process, using limited cone-beam computed tomography (CBCT) imaging.
Resumo:
To determine the frequency of incidental maxillary sinus findings using cone-beam computed tomography (CBCT) images made for orthodontic purposes.
Resumo:
The objective of this pilot investigation was to evaluate the utility and precision of already existing limited cone-beam computed tomography (CBCT) scans in measuring the endodontic working length, and to compare it with standard clinical procedures.
Resumo:
To assess retrospectively the frequency and location of mandibular lingual foramina and their bony canals with limited cone-beam computed tomography.
Resumo:
The purpose of this retrospective radiographic study was to analyze the thickness of the facial bone wall at teeth in the anterior maxilla based on cone beam computed tomography (CBCT) images, since this anatomical structure is important for the selection of an appropriate treatment approach in patients undergoing postextraction implant placement. A total of 125 CBCT scans met the inclusion criteria, resulting in a sample size of 498 teeth. The thickness of the facial bone wall in the respective sagittal scans was measured perpendicular to the long axis of the tooth at two locations: at the crest level (4 mm apical to the cementoenamel junction; MP1) and at the middle of the root (MP2). No existing bone wall was found in 25.7% of all teeth at MP1 and in 10.0% at MP2. The majority of the examined teeth exhibited a thin facial bone wall (< 1 mm; 62.9% at MP1, 80.1% at MP2). A thick bone wall (? 1 mm) was found in only 11.4% of all examined teeth at MP1 and 9.8% at MP2. There was a statistically significant decrease in facial bone wall thickness from the first premolars to the central incisors. The facial bone wall in the crestal area of teeth in the anterior maxilla was either missing or thin in roughly 90.0% of patients. Both a missing and thin facial wall require simultaneous contour augmentation at implant placement because of the well-documented bone resorption that occurs at a thin facial bone wall following tooth extraction. Consequently, radiographic analysis of the facial bone wall using CBCT prior to extraction is recommended for selection of the appropriate treatment approach.
Resumo:
To determine the dimensions of the Schneiderian membrane using limited cone beam computed tomography (CBCT) in individuals referred for dental implant surgery, and to determine factors influencing the mucosal thickness.
Resumo:
This study evaluates the dimensions of nasopalatine duct cysts (NPDCs) and the involvement of neighboring anatomical structures using standardized limited cone beam computed tomography (CBCT) and a possible correlation to the patient's age, gender, preoperative symptoms, and postsurgical complications.
Resumo:
The purpose of the present study was to evaluate the detectability and dimensions of periapical lesions, the relationship of the mandibular canal to the roots of the respective teeth, and the dimension of the buccal bone by using limited cone-beam computed tomography (CBCT) in comparison to conventional periapical (PA) radiographs for evaluation of mandibular molars before apical surgery.
Resumo:
The determination of root canal length is a significant outcome predictor for endodontic treatments. The aim of this prospective, controlled clinical study was to analyze endodontic working length measurements in preexisting cone-beam computed tomography (CBCT) scans and to compare them with clinical root canal length determination by using an electronic apex locator (EAL).
Resumo:
Foreign bodies are common findings in the maxillofacial region, most commonly the result of accidents and physical aggression. Among the objects frequently found in the orofacial tissues are fragments of metal, plastic, wood, and glass. Visualization and exact identification of the location of these objects can be challenging but is of major importance prior to surgical removal. The present case report describes the use of cone beam computed tomography to locate, visualize, and surgically remove glass particles in the oral cavity.
Resumo:
The purpose of the present study was to compare conventional intraoral periapical radiographs (PA) with limited cone beam computed tomography (CBCT) for evaluation of mandibular molars prior to apical surgery. The apical extent and homogeneity of the root canal fillings (RCF) as well as the number of root canals were examined.
Resumo:
This retrospective radiographic study analyzed the dimensions of the alveolar bone in the posterior dentate mandible based on cone beam computed tomography (CBCT) images. A total of 56 CBCT images met the inclusion criteria, resulting in a sample size of 122 cross sections showing posterior mandibular teeth (premolars and molars). The thickness of the buccal and lingual bone walls was measured at two locations: 4 mm apical to the cementoenamel junction (measurement point 1, MP1) and at the middle of the root (measurement point 2, MP2). Further, alveolar bone width was assessed at the level of the most coronal buccal bone detectable (alveolar bone width 1, BW1) and at the superior border of the mandibular canal (alveolar bone width 2, BW2). The vertical distance between the two as well as the presence of a lingual undercut were also analyzed. There was a steady increase in buccal bone wall thickness from the first premolar to the second molar at both MP1 and MP2. BW1 at the level of the premolars was significantly thinner than that for molars. Alveolar bone height was constant for all teeth examined. For the selection of an appropriate postextraction treatment approach, analysis of the alveolar bone dimensions at the tooth to be extracted by means of CBCT can offer valuable information concerning bone volume and morphology at the future implant site.
Resumo:
The purpose of the present study was to evaluate the thickness and the anatomic characteristics of the Schneiderian membrane and cortical bone using limited cone beam computed tomography (CBCT) scannning in patients referred for planning of apical surgery of maxillary molars.
Resumo:
AIM: To compare intraoral occlusal (OC) and periapical (PA) radiographs vs. limited cone beam computed tomography (CBCT) in diagnosing root-fractured permanent teeth. MATERIAL AND METHODS: In 38 patients (mean age 24 years, range 8-52 years) with 44 permanent teeth with horizontal root fractures, intraoral radiographs (PA and OC) and limited CBCT were used to evaluate the location (apical, middle, cervical third of the root) and angulation of the fracture line. Furthermore, the conventional radiographs and CBCT images were compared for concordance of fracture location. RESULTS: In the PA and OC radiographs, 28 fractures (63.6%) were located in the middle third of the root, 11 (25.0%) in the apical third and 5 (11.4%) in the cervical third. The PA/OC radiographs and the sagittal CBCT images (facial aspect) yielded the same level of root fracture in 70.5% of cases (31 teeth; 95% CI: 54.1-82.7%). The PA/OC radiographs and sagittal CBCT images (palatal aspect) showed the same level of root fracture in 31.8% of cases. There was a statistically significant association between the angle at which the root fracture line intersected the axis of the tooth and the level of root fracture in the facial aspect of the sagittal CBCT images. CONCLUSIONS: The diagnosis of the location and angulation of root fractures based on limited CBCT imaging differs significantly from diagnostic procedures based on intraoral radiographs (PA/OC) alone. The clinical significance for treatment strategies and for the prognosis of root-fractured teeth has to be addressed in future studies.