9 resultados para CONCANAVALIN A
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Concanavalin A (Con A)-induced injury is an established natural killer T (NKT) cell-mediated model of inflammation that has been used in studies of immune liver disease. Extracellular nucleotides, such as adenosine triphosphate, are released by Con A-stimulated cells and bind to specific purinergic type 2 receptors to modulate immune activation responses. Levels of extracellular nucleotides are in turn closely regulated by ectonucleotidases, such as CD39/NTPDase1. Effects of extracellular nucleotides and CD39 on NKT cell activation and upon hepatic inflammation have been largely unexplored to date. Here, we show that NKT cells express both CD39 and CD73/ecto-5'-nucleotidase and can therefore generate adenosine from extracellular nucleotides, whereas natural killer cells do not express CD73. In vivo, mice null for CD39 are protected from Con A-induced liver injury and show substantively lower serum levels of interleukin-4 and interferon-gamma when compared with matched wild-type mice. Numbers of hepatic NKT cells are significantly decreased in CD39 null mice after Con A administration. Hepatic NKT cells express most P2X and P2Y receptors; exceptions include P2X3 and P2Y11. Heightened levels of apoptosis of CD39 null NKT cells in vivo and in vitro appear to be driven by unimpeded activation of the P2X7 receptor. CONCLUSION: CD39 and CD73 are novel phenotypic markers of NKT cells. Deletion of CD39 modulates nucleotide-mediated cytokine production by, and limits apoptosis of, hepatic NKT cells providing protection against Con A-induced hepatitis. This study illustrates a further role for purinergic signaling in NKT-mediated mechanisms that result in liver immune injury.
Resumo:
Horses are particularly prone to allergic and autoimmune diseases, but little information about equine regulatory T cells (Treg) is currently available. The aim of this study therefore was to investigate the existence of CD4(+) Treg cells in horses, determine their suppressive function as well as their mechanism of action. Freshly isolated peripheral blood mononuclear cells (PBMC) from healthy horses were examined for CD4, CD25 and forkhead box P3 (FoxP3) expression. We show that equine FoxP3 is expressed constitutively by a population of CD4(+) CD25(+) T cells, mainly in the CD4(+) CD25(high) subpopulation. Proliferation of CD4(+) CD25(-) sorted cells stimulated with irradiated allogenic PBMC was significantly suppressed in co-culture with CD4(+) CD25(high) sorted cells in a dose-dependent manner. The mechanism of suppression by the CD4(+) CD25(high) cell population is mediated by close contact as well as interleukin (IL)-10 and transforming growth factor-beta1 (TGF-beta1) and probably other factors. In addition, we studied the in vitro induction of CD4(+) Treg and their characteristics compared to those of freshly isolated CD4(+) Treg cells. Upon stimulation with a combination of concanavalin A, TGF-beta1 and IL-2, CD4(+) CD25(+) T cells which express FoxP3 and have suppressive capability were induced from CD4(+) CD25(-) cells. The induced CD4(+) CD25(high) express higher levels of IL-10 and TGF-beta1 mRNA compared to the freshly isolated ones. Thus, in horses as in man, the circulating CD4(+) CD25(high) subpopulation contains natural Treg cells and functional Treg can be induced in vitro upon appropriate stimulation. Our study provides the first evidence of the regulatory function of CD4(+) CD25(+) cells in horses and offers insights into ex vivo manipulation of Treg cells.
Resumo:
Intraperitoneal proliferation of the metacestode stage of Echinococcus multilocularis in experimentally infected mice is followed by an impaired host immune response favoring parasite survival. We here demonstrate that infection in chronically infected mice was associated with a 3-fold increase of the percentages of CD4+ and CD8+ peritoneal T (pT) cells compared to uninfected controls. pT cells of infected mice expressed high levels of IL-4 mRNA, while only low amounts of IFN-gamma mRNA were detected, suggesting that a Th2-biased immune response predominated the late stage of disease. Peritoneal dendritic cells from infected mice (AE-pDCs) expressed high levels of TGF-beta mRNA and very low levels of IL-10 and IL-12 (p40) mRNA, and the expression of surface markers for DC-maturation such as MHC class II (Ia) molecules, CD80, CD86 and CD40 was down-regulated. In contrast to pDCs from non-infected mice, AE-pDCs did not enhance Concanavalin A (ConA)-induced proliferation when added to CD4+ pT and CD8+ pT cells of infected and non-infected mice, respectively. In addition, in the presence of a constant number of pDCs from non-infected mice, the proliferation of CD4+ pT cells obtained from infected animals to stimulation with ConA was lower when compared to the responses of CD4+ pT cells obtained from non-infected mice. This indicated that regulatory T cells (Treg) may interfere in the complex immunological host response to infection. Indeed, a subpopulation of regulatory CD4+ CD25+ pT cells isolated from E. multilocularis-infected mice reduced ConA-driven proliferation of CD4+ pT cells. The high expression levels of Foxp3 mRNA by CD4+ and CD8+ pT cells suggested that subpopulations of regulatory CD4+ Foxp3+ and CD8+ Foxp3+ T cells were involved in modulating the immune responses within the peritoneal cavity of E. multilocularis-infected mice.
Resumo:
Equine recurrent airway obstruction (RAO) is an inflammatory, obstructive airway disease induced by exposure of susceptible horses to inhaled organic dust particles. The immunological process underlying RAO is still unclear. Previous studies have shown that RAO is linked to the Interleukin-4 receptor (IL-4R) gene in one Warmblood family (F1), but not in another (F2). It has also been shown that in F1, but not in F2, RAO is associated with resistance against parasites, suggesting that this association may have an immuno-genetic basis. Therefore, we hypothesized that the T helper (h)1/Th2/regulatory (Treg) cytokine profiles of RAO-associated antigen- and parasite-antigen-stimulated peripheral blood mononuclear cells (PBMC) differ between RAO-affected and healthy horses depending on their genetic background. In our study, PBMC from 17 RAO-affected and 14 healthy control horses of F1 and F2 were stimulated for 24h with antigens relevant to RAO [hay dust extract (HDE), Aspergillus fumigatus extract (AFE) and lipopolysaccharids (LPS)]; cyathostomin extract (CE) and recombinant cyathostomin antigen (RCA) or with concanavalin A (ConA). Total mRNA levels of IL-4, IL-4R, IL-13, interferon (INF)-γ and IL-10 were examined by qRT-PCR. Stimulation with either HDE or RCA resulted in significant differences in IL-4R mRNA levels between RAO-affected and control horses in F1, but not in F2. For IL-10 mRNA expression, a significant difference between RAO-affected and control horses in F1 but not in F2 was observed only following stimulation with HDE. In contrast to HDE, stimulation with CE resulted in a significant difference of IL-10 mRNA expression level between RAO-affected horses of F2 and healthy horses of F1. No significant differences were detected upon stimulation with any of the other challenge agents. These findings indicate that the immunological response, specifically IL-4R expression, in response to hay dust and cyathostomin antigens, differs between RAO-affected and healthy horses depending on their genetic background. This study shows that analysis of PBMC reveals systemic changes associated with RAO and helps to elucidate immunological pathways involved in this disease.
Resumo:
Epithelial cells of different phenotypes derived from bovine corpus luteum have been studied intensively in our laboratory. In this study, specific lectin binding was examined for cells of type 1 and 3, which were defined as endothelial cells. In order to confirm differences in their glycocalyx at the light microscopic level, five biotinylated lectins were applied to postconfluent cultures which had been fixed with buffered paraformaldehyde or glutaraldehyde. Cells were not permeabilized with any detergent. Lectin binding was localized with a streptavidin-peroxidase complex which was visualized with two different techniques. The DAB technique detected peroxidase histochemically, while the immunogold technique used an anti-peroxidase gold complex together with silver amplification. Neither cell type 1 nor cell type 3 bound a particular lectin selectively, yet each cell type expressed a particular lectin binding pattern. With the DAB technique, diverse lectin binding patterns were seen, probably indicating either "outside" binding, i.e., a diffuse pattern, a lateral-cell-side pattern and a microvillus-like pattern, or "inside" binding, i.e., a diffuse pattern, and a granule-like pattern. With the immunogold technique, only "outside" binding was observed. In addition, the patterns of single cilia or of single circles were detected, the latter roughly representing 3-micron-sized binding sites for concanavalin A. When localizing them at the ultrastructural level, single circles corresponded with micron-sized discontinuities of the plasma membrane. Shedding vesicles were detected whose outer membrane was labelled with concanavalin A. Our results confirm the diversity of the two cell types under study. The "inside" lectin binding may be caused by way of transient plasma membrane openings and related to shedding of right-side out vesicles ("ectocytosis").
Resumo:
Synthetic agonists of TLR9 containing novel DNA structures and R'pG (wherein R=1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine) motifs, referred to as immune modulatory oligonucleotides (IMOs), have been shown to stimulate T(H)-1-type-immune responses and potently reverse allergen-induced T(H)-2 responses to T(H)-1 responses in vitro and in vivo in mice. In order to investigate the immunomodulatory potential of IMOs in dogs, canine peripheral blood mononuclear cells (PBMC) from healthy dogs were stimulated with three different IMOs and a control IMO, alone or in combination with concanavalin A (ConA). Lipopolysaccharide (LPS) was used as a positive control for B lymphocyte activation. Carboxyfluorescein diacetate succinimidyl ester and phenotype staining was used to tag proliferating T and B lymphocytes (CD5(+) and CD21(+)) by flow cytometry. Real-time PCR and ELISA were processed to assay cytokine production of IFN-gamma, IL-10, TGF-beta, IL-6 and IL-10. Like LPS, IMOs alone induced neither proliferation of CD5(+) T cells nor CD21(+) B cells, but both LPS and IMO had the capacity to co-stimulate ConA and induced proliferation of B cells. In combination with ConA, one of the IMOs (IMO1) also induced proliferation of T cells. IMO1 also significantly enhanced the expression of IFN-gamma on the mRNA and protein level in canine PBMC, whereas expression of IL-10, TGF-beta and IL-4 mRNAs was not induced by any of the IMOs. These results indicate that in canine PBMC from healthy dogs, IMO1 was able to induce a T(H)-1 immune response including T- and B-cell proliferation.
Resumo:
A human interleukin 4 (hIL-4)-encoding cDNA (hIL4) probe was used to screen a bovine genomic library, and three clones containing sequences with homology to the human and mouse IL4 cDNAs were isolated. Sequence information obtained from one of these genomic clones was used to design an oligodeoxyribonucleotide primer corresponding to the transcription start point region for use in the polymerase chain reaction (PCR). The PCR-RACE protocol, designed for the rapid amplification of cDNA ends, was successfully used to generate a full-length bovine IL4 (bIL4) cDNA clone from polyadenylated RNA isolated from concanavalin A-stimulated bovine lymph node cells. The bIL4 cDNA is 570 bp in length and contains an open reading frame of 405 nucleotides (nt), coding for a 15.1-kDa precursor of 135 amino acids (aa), which should be reduced to 12.6 kDa for unglycosylated bIL4 after cleavage of a putative hydrophobic leader sequence of 24 aa. The aa sequence contains one possible Asn-linked glycosylation site. Bovine IL4 is shorter than mouse (mIL4) and hIL4, because of a 51-nt deletion in the coding region. Comparison of the overall nt and deduced aa sequences shows a greater homology of bIL4 with hIL4 than with mIL4. This homology is not evenly distributed, however, with the nt sequences 5' and 3' of the coding region showing a much greater homology between all three species than the coding sequence.
Resumo:
Previous studies have demonstrated the serologic and T-cell immunogenicity for cattle of a recombinant form of the apical complex-associated 77-kDa merozite protein of Babesia bovis, designated Bb-1. The present study characterizes the immunogenic epitopes of the Bb-1 protein. A series of recombinant truncated fusion proteins spanning the majority of the Bb-1 protein were expressed in Escherichia coli, and their reactivities with bovine peripheral blood mononuclear cells and T-cell clones derived from B. bovis-immune cattle and with rabbit antibodies were determined. Lymphocytes from two immune cattle were preferentially stimulated by the N-terminal half of the Bb-1 protein (amino acids 23 to 266, termed Bb-1A), localizing the T-cell epitopes to the Bb-1A portion of the molecule. CD4+ T-cell clones derived by stimulation with the intact Bb-1 fusion protein were used to identify two T-cell epitopes in the Bb-1A protein, consisting of amino acids SVVLLSAFSGN VWANEAEVSQVVK and FSDVDKTKSTEKT (residues 23 to 46 and 82 to 94). In contrast, rabbit antiserum raised against the intact fusion protein reacted only with the C-terminal half of the protein (amino acids 267 to 499, termed Bb-1B), which contained 28 tandem repeats of the tetrapeptide PAEK or PAET. Biological assays and Northern (RNA) blot analyses for cytokines revealed that following activation with concanavalin A, T-cell clones reactive against the two Bb-1A epitopes produced interleukin-2, gamma interferon, and tumor necrosis factors beta and alpha, but not interleukin-4, suggesting that the Bb-1 antigen preferentially stimulates the Th1 subset of CD4+ T cells in cattle. The studies described here report for the first time the characterization, by cytokine production, of the Th1 subset of bovine T cells and show that, as in mice, protozoal antigens can induce Th1 cells in ruminants. This first demonstration of B. bovis-encoded Th1 cell epitopes provides a rationale for incorporation of all or part of the Bb-1 protein into a recombinant vaccine.