14 resultados para COAGULATION SYSTEM

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This review describes some natural proteins, which can be employed, either as factor concentrates derived from human plasma or as recombinant drug, to modulate the coagulation system. I will address some biochemical characteristics and the physiological role of von Willebrand factor, the coagulation factors of the extrinsic and intrinsic pathways, and the physiological anticoagulant protein C. In addition, I will detail the pharmacological compounds, which are available for influencing or substituting the coagulation proteins: desmopressin (DDAVP), single coagulation factor concentrates, prothrombin complex concentrates, and protein C concentrate. In particular, I will address some treatment topics of general medical interest, such as the treatment of massive bleeding, the correction of the coagulopathy induced by vitamin K-antagonists in patients with cerebral haemorrhage, and of the coagulopathy of meningococcemia. Finally, I will describe some properties and practical clinical applications of the recombinant anticoagulans lepirudin and bivalirudin, which are derived from hirudin, the natural anticoagulant of the medical leech.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Blood coagulation activation might be one mechanism linking acute mental stress with coronary events. We investigated the natural habituation of coagulation responses and recovery to short-term mental stress. Three times with one-week intervals, 24 men (mean age 47 +/- 7 years) underwent the same 13-min stressor (preparation, job interview, mental arithmetic). During each visit venous blood was obtained four times (baseline, immediately post-stress, 45 min of recovery, 105 min of recovery). Eight blood coagulation parameters were measured at weeks one and three. Acute stress provoked increases in von Willebrand factor antigen, fibrinogen, clotting factor FVII activity (FVII:C), FVIII:C, FXII:C (p's < or = 0.019), and D-dimer (N.S.). All coagulation parameters experienced full recovery except FVIII:C (p = 0.022). Stress did not significantly affect activated partial thromboplastin time and prothrombin time. At all time points FVIII:C and FXII:C levels were significantly higher at week one compared to week three (p's < or = 0.041). Before catheter insertion, systolic blood pressure (p = 0.001) and heart rate (p = 0.026) were relatively higher at week one. Unlike the magnitude of systolic blood pressure response to stress (p = 0.007) and of cortisol recovery from stress (p = 0.002), the magnitude of all coagulation responses to stress and the recovery from stress were similar in week one and week three. Sympathetic activation with anticipatory stress best explained increased baseline activity in FVIII and FXII at week one. An incapacity of the coagulation system to adapt to stress repeats is perhaps a consequence of evolution, but might also contribute to increased coronary risk in some individuals, particularly in those with cardiovascular diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Dysregulation of the coagulation system due to inflammatory responses and cross-species molecular incompatibilities represents a major obstacle to successful xenotransplantation. We hypothesized that complement inhibition mediated by transgenic expression of human CD46 in pigs might also regulate the coagulation and fibrinolysis cascades and tested this in ex vivo human-to-pig xenoperfusions. METHODS Forelimbs of wild-type and hCD46/HLA-E double transgenic pigs were ex vivo xenoperfused for 12 hours with whole heparinized human blood. Muscle biopsies were stained for galactose-α1,3-galactose, immunoglobulin M, immunoglobulin G, complement, fibrin, tissue factor, fibrinogen-like protein 2, tissue plasminogen activator (tPA), and plasminogen activator inhibitor (PAI)-1. The PAI-1/tPA complexes, D-dimers, and prothrombin fragment F1 + 2 were measured in plasma samples after ex vivo xenoperfusion. RESULTS No differences of galactose expression or deposition of immunoglobulin M and immunoglobulin G were found in xenoperfused tissues of wild type and transgenic limbs. In contrast, significantly lower deposition of C5b-9 (P < 0.0001), fibrin (P = 0.009), and diminished expression of tissue factor (P = 0.005) and fibrinogen-like protein 2 (P = 0.028) were found in xenoperfused tissues of transgenic limbs. Levels of prothrombin fragment F1 + 2 (P = 0.031) and D-dimers (P = 0.044) were significantly lower in plasma samples obtained from transgenic as compared to wild-type pig limb perfusions. The expression of the fibrinolytic marker tPA was significantly higher (P = 0.009), whereas PAI-1 expression (P = 0.022) and PAI-1/tPA complexes in plasma (P = 0.015) were lower after transgenic xenoperfusion as compared to wild-type xenoperfusions. CONCLUSIONS In this human-to-pig xenoperfusion model, complement inhibition by transgenic hCD46 expression led to a significant inhibition of procoagulant and antifibrinolytic pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Activation of endothelial cells (EC) in xenotransplantation is mostly induced through binding of antibodies (Ab) and activation of the complement system. Activated EC lose their heparan sulfate proteoglycan (HSPG) layer and exhibit a procoagulant and pro-inflammatory cell surface. We have recently shown that the semi-synthetic proteoglycan analog dextran sulfate (DXS, MW 5000) blocks activation of the complement cascade and acts as an EC-protectant both in vitro and in vivo. However, DXS is a strong anticoagulant and systemic use of this substance in a clinical setting might therefore be compromised. It was the aim of this study to investigate a novel, fully synthetic EC-protectant with reduced inhibition of the coagulation system. METHOD: By screening with standard complement (CH50) and coagulation assays (activated partial thromboplastin time, aPTT), a conjugate of tyrosine sulfate to a polymer-backbone (sTyr-PAA) was identified as a candidate EC-protectant. The pathway-specificity of complement inhibition by sTyr-PAA was tested in hemolytic assays. To further characterize the substance, the effects of sTyr-PAA and DXS on complement deposition on pig cells were compared by flow cytometry and cytotoxicity assays. Using fluorescein-labeled sTyr-PAA (sTyr-PAA-Fluo), the binding of sTyr-PAA to cell surfaces was also investigated. RESULTS: Of all tested compounds, sTyr-PAA was the most effective substance in inhibiting all three pathways of complement activation. Its capacity to inhibit the coagulation cascade was significantly reduced as compared with DXS. sTyr-PAA also dose-dependently inhibited deposition of human complement on pig cells and this inhibition correlated with the binding of sTyr-PAA to the cells. Moreover, we were able to demonstrate that sTyr-PAA binds preferentially and dose-dependently to damaged EC. CONCLUSIONS: We could show that sTyr-PAA acts as an EC-protectant by binding to the cells and protecting them from complement-mediated damage. It has less effect on the coagulation system than DXS and may therefore have potential for in vivo application.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To measure surrogate markers of coagulation activation as well as of the systemic inflammatory response in patients undergoing primary elective coronary artery bypass grafting (CABG) using either the so-called Smart suction device or a continuous autotransfusion system (C.A.T.S.®).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Numerous interactions between the coagulation and complement systems have been shown. Recently, links between coagulation and mannan-binding lectin-associated serine protease-1 (MASP-1) of the complement lectin pathway have been proposed. Our aim was to investigate MASP-1 activation of factor XIII (FXIII), fibrinogen, prothrombin, and thrombin-activatable fibrinolysis inhibitor (TAFI) in plasma-based systems, and to analyse effects of MASP-1 on plasma clot formation, structure and lysis. Methodology/Principal Findings We used a FXIII incorporation assay and specific assays to measure the activation products prothrombin fragment F1+2, fibrinopeptide A (FPA), and activated TAFI (TAFIa). Clot formation and lysis were assessed by turbidimetric assay. Clot structure was studied by scanning electron microscopy. MASP-1 activated FXIII and, contrary to thrombin, induced FXIII activity faster in the Val34 than the Leu34 variant. MASP-1-dependent generation of F1+2, FPA and TAFIa showed a dose-dependent response in normal citrated plasma (NCP), albeit MASP-1 was much less efficient than FXa or thrombin. MASP-1 activation of prothrombin and TAFI cleavage were confirmed in purified systems. No FPA generation was observed in prothrombin-depleted plasma. MASP-1 induced clot formation in NCP, affected clot structure, and prolonged clot lysis. Conclusions/Significance We show that MASP-1 interacts with plasma clot formation on different levels and influences fibrin structure. Although MASP-1-induced fibrin formation is thrombin-dependent, MASP-1 directly activates prothrombin, FXIII and TAFI. We suggest that MASP-1, in concerted action with other complement and coagulation proteins, may play a role in fibrin clot formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plasmin-antiplasmin system plays a key role in blood coagulation and fibrinolysis. Plasmin and (2)-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into soluble fragments. However, besides plasmin(ogen) and (2)-antiplasmin the system contains a series of specific activators and inhibitors. The main physiological activators of plasminogen are tissue-type plasminogen activator, which is mainly involved in the dissolution of the fibrin polymers by plasmin, and urokinase-type plasminogen activator, which is primarily responsible for the generation of plasmin activity in the intercellular space. Both activators are multidomain serine proteases. Besides the main physiological inhibitor (2)-antiplasmin, the plasmin-antiplasmin system is also regulated by the general protease inhibitor (2)-macroglobulin, a member of the protease inhibitor I39 family. The activity of the plasminogen activators is primarily regulated by the plasminogen activator inhibitors 1 and 2, members of the serine protease inhibitor superfamily.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ROTEM® is considered a helpful point-of-care device to monitor blood coagulation in emergency situations. Centrally performed analysis is desirable but rapid transport of blood samples is an important prerequisite. The effect of acceleration forces on sample transport through a pneumatic tube system on ROTEM® should be tested at each institution to exclude a pre-analytical influence. The aims of the present work were: (i) to investigate the effect of pneumatic tube transport on ROTEM® parameters; (ii) to compare blood sample transport via pneumatic tube vs. manual transportation; and (iii) to determine the effect of acceleration forces on ROTEM® parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atherosclerotic diseases such as coronary artery disease and ischaemic stroke are caused by chronic inflammation in arterial vessel walls. The complement system is part of the innate immune system. It is involved in many processes contributing to onset and development of atherosclerotic plaques up to the final stage of acute thrombotic events. This is due to its prominent role in inflammatory processes. In addition, there is increasing evidence that interactions between complement and coagulation provide a link between inflammation and thrombosis. On the other hand, the complement system also has an atheroprotective function through the clearance of apoptotic material. The knowledge of these complex mechanisms will become increasingly important, also for clinicians, since it may lead to novel therapeutic and diagnostic options. Therapies targeting the complement system have the potential to reduce tissue damage caused by acute ischaemic events. Whether early anti-inflammatory and anti-complement therapy may be able to prevent atherosclerosis, remains a hot topic for research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BDE-47 is one of the most widely found congeners of PBDEs in marine environments. The potential immunomodulatory effects of BDE-47 on fish complement system were studied using the marine medaka Oryzias melastigma as a model fish. Three-month-old O. melastigma were subjected to short-term (5 days) and long-term (21 days) exposure to two concentrations of BDE-47 (low dose at 290 +/- 172 ng/day; high dose at 580 +/- 344 ng/day) via dietary uptake of BDE-47 encapsulated in Artemia nauplii. Body burdens of BDE-47 and other metabolic products were analyzed in the exposed and control fish. Only a small amount of debrominated product, BDE-28, was detected, while other metabolic products were all under detection limit. Transcriptional expression of six major complement system genes involved in complement activation: C1r/s (classical pathway), MBL-2 (lectin pathway), CFP (alternative pathway), F2 (coagulation pathway), C3 (the central component of complement system), and C9 (cell lysis) were quantified in the liver of marine medaka. Endogenous expression of all six complement system genes was found to be higher in males than in females (p < 0.05). Upon dietary exposure of marine medaka to BDE-47, expression of all six complement genes were downregulated in males at day 5 (or longer), whereas in females, MBl-2, CFP, and F2 mRNAs expression were upregulated, but C3 and C9 remained stable with exposure time and dose. A significant negative relationship was found between BDE-47 body burden and mRNA expression of C1r/s, CFP, and C3 in male fish (r = -0.8576 to -0.9447). The above findings on changes in complement gene expression patterns indicate the complement system may be compromised in male O. melastigma upon dietary exposure to BDE-47. Distinct gender difference in expression of six major complement system genes was evident in marine medaka under resting condition and dietary BDE-47 challenge. The immunomodulatory effects of BDE-47 on transcriptional expression of these complement components in marine medaka were likely induced by the parent compound instead of biotransformed products. Our results clearly demonstrate that future direction for fish immunotoxicology and risk assessment of immunosuppressive chemicals must include parallel evaluation for both genders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spiders, as all other arthropods, have an open circulatory system, and their body fluid, the hemolymph, freely moves between lymphatic vessels and the body cavities (see Wirkner and Huckstorf 2013). The hemolymph can be considered as a multifunctional organ, central for locomotion (Kropf 2013), respiration (Burmester 2013) and nutrition, and it amounts to approximately 20 % of a spider’s body weight. Any injury includes not only immediate hemolymph loss but also pathogen attacks and subsequent infections. Therefore spiders have to react to injuries in a combined manner to stop fluid loss and to defend against microbial invaders. This is achieved by an innate immune system which involves several host defence systems such as hemolymph coagulation and the production of a variety of defensive substances (Fukuzawa et al.2008). In spiders, the immune system is localised in hemocytes which are derived from the myocardium cells of the heart wall where they are produced as prohemocytes and from where they are released as different cell types into the hemolymph (Seitz 1972). They contribute to the defence against pathogens by phagocytosis, nodulation and encapsulation of invaders. The humoral response includes mechanisms which induce melanin production to destroy pathogens, a clotting cascade to stop hemolymph loss and the constitutive production of several types of antimicrobial peptides, which are stored in hemocyte granules and released into the hemolymph (Fukuzawa et al.2008) (Fig.7.1). The immune system of spiders is an innate immune system. It is hemolymph-based and characterised by a broad but not very particular specificity. Its advantage is a fast response within minutes to a few hours. This is in contrast to the adaptive immune system of vertebrates which can react to very specific pathogens, thus resulting in much more specific responses. Moreover, it creates an immunological memory during the lifetime of the species. The disadvantage is that it needs more time to react with antibody production, usually many hours to a few days, and needs to be built up during early ontogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MASP-1 is a versatile serine protease that cleaves a number of substrates in human blood. In recent years it became evident that besides playing a crucial role in complement activation MASP-1 also triggers other cascade systems and even cells to mount a more powerful innate immune response. In this review we summarize the latest discoveries about the diverse functions of this multi-faceted protease. Recent studies revealed that among MBL-associated serine proteases, MASP-1 is the one responsible for triggering the lectin pathway via its ability to rapidly autoactivate then cleave MASP-2, and possibly MASP-3. The crystal structure of MASP-1 explains its more relaxed substrate specificity compared to the related complement enzymes. Due to the relaxed specificity, MASP-1 interacts with the coagulation cascade and the kinin generating system, and it can also activate endothelial cells eliciting pro-inflammatory signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mannan-binding lectin-associated serine protease-1 (MASP-1), a protein of the complement lectin pathway, resembles thrombin in terms of structural features and substrate specificity, and it has been shown to activate coagulation factors. Here we studied the effects of MASP-1 on clot formation in whole blood (WB) and platelet-poor plasma (PPP) by thrombelastography and further elucidated the underlying mechanism. Cleavage of prothrombin by MASP-1 was investigated by SDS-PAGE and N-terminal sequencing of cleavage products. Addition of MASP-1 or thrombin to WB and PPP shortened the clotting time and clot formation time significantly compared to recalcified-only samples. The combination of MASP-1 and thrombin had additive effects. In a purified system, MASP-1 was able to induce clotting only in presence of prothrombin. Analysis of MASP-1-digested prothrombin confirmed that MASP-1 cleaves prothrombin at three cleavage sites. In conclusion, we have shown that MASP-1 is able to induce and promote clot formation measured in a global setting using the technique of thrombelastography. We further confirmed that MASP-1-induced clotting is dependent on prothrombin. Finally, we have demonstrated that MASP-1 cleaves prothrombin and identified its cleavage sites, suggesting that MASP-1 gives rise to an alternative active form of thrombin by cleaving at the cleavage site R393.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND REG1 is a novel anticoagulation system consisting of pegnivacogin, an RNA aptamer inhibitor of coagulation factor IXa, and anivamersen, a complementary sequence reversal oligonucleotide. We tested the hypothesis that near complete inhibition of factor IXa with pegnivacogin during percutaneous coronary intervention, followed by partial reversal with anivamersen, would reduce ischaemic events compared with bivalirudin, without increasing bleeding. METHODS We did a randomised, open-label, active-controlled, multicentre, superiority trial to compare REG1 with bivalirudin at 225 hospitals in North America and Europe. We planned to randomly allocate 13,200 patients undergoing percutaneous coronary intervention in a 1:1 ratio to either REG1 (pegnivacogin 1 mg/kg bolus [>99% factor IXa inhibition] followed by 80% reversal with anivamersen after percutaneous coronary intervention) or bivalirudin. Exclusion criteria included ST segment elevation myocardial infarction within 48 h. The primary efficacy endpoint was the composite of all-cause death, myocardial infarction, stroke, and unplanned target lesion revascularisation by day 3 after randomisation. The principal safety endpoint was major bleeding. Analysis was by intention to treat. This trial is registered at ClinicalTrials.gov, identifier NCT01848106. The trial was terminated early after enrolment of 3232 patients due to severe allergic reactions. FINDINGS 1616 patients were allocated REG1 and 1616 were assigned bivalirudin, of whom 1605 and 1601 patients, respectively, received the assigned treatment. Severe allergic reactions were reported in ten (1%) of 1605 patients receiving REG1 versus one (<1%) of 1601 patients treated with bivalirudin. The composite primary endpoint did not differ between groups, with 108 (7%) of 1616 patients assigned REG1 and 103 (6%) of 1616 allocated bivalirudin reporting a primary endpoint event (odds ratio [OR] 1·05, 95% CI 0·80-1·39; p=0·72). Major bleeding was similar between treatment groups (seven [<1%] of 1605 receiving REG1 vs two [<1%] of 1601 treated with bivalirudin; OR 3·49, 95% CI 0·73-16·82; p=0·10), but major or minor bleeding was increased with REG1 (104 [6%] vs 65 [4%]; 1·64, 1·19-2·25; p=0·002). INTERPRETATION The reversible factor IXa inhibitor REG1, as currently formulated, is associated with severe allergic reactions. Although statistical power was limited because of early termination, there was no evidence that REG1 reduced ischaemic events or bleeding compared with bivalirudin. FUNDING Regado Biosciences Inc.