23 resultados para CLIMATES

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different policies are required for different types of human mobility related to climatic changes. Hence, it is necessary to distinguish between migration, displacement and planned relocation in climate policy and operations. The purpose of this Policy Brief is to help distinguish between human migration, displacement and planned relocation and present state-of-the-art thinking about some of the key issues related to addressing these in the context of climate policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atmospheric westerly flow in the North Atlantic (NA) sector is dominated by atmospheric waves or eddies generating via momentum flux convergence, the so-called eddy-driven jet. The position of this jet is variable and shows for the present-day winter climate three preferred latitudinal states: a northern, central, and southernposition in the NA. Here, the authors analyze the behavior of the eddy-driven jet under different glacial and interglacial boundary conditions using atmosphere–land-only simulations with the CCSM4 climate model. As state-of-the-art climate models tend to underestimate the trimodality of the jet latitude, the authors apply a bias correction and successfully extract the trimodal behavior of the jet within CCSM4. The analysis shows that during interglacial times (i.e., the early Holocene and the Eemian) the preferred jet positions are rather stable and the observed multimodality is the typical interglacial character of the jet. During glacial times, the jet is strongly enhanced, its position is shifted southward, and the trimodal behavior vanishes. This is mainly due to the presence of the Laurentide ice sheet (LIS). The LIS enhances stationary waves downstream, thereby accelerating and displacing the NA eddy-driven jet by anomalous stationary momentum flux convergence. Additionally, changes in the transient eddy activity caused by topography changes as well as other glacial boundary conditions lead to an acceleration of the westerly winds over the southern NA at the expenseof more northernareas. Consequently, bothstationaryand transient eddiesfoster the southward shift of the NA eddy-driven jet during glacial winter times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the vegetation and fire history of Sardinia, and especially the long-term history of the thermo-Mediterranean belt that encompasses its entire coastal lowlands. A new sedimentary record from a coastal lake based on pollen, spores, macrofossils and microscopic charcoal analysis is used to reconstruct the vegetation and fire history in north-eastern Sardinia. During the mid-Holocene (c. 8,100–5,300 cal bp), the vegetation around Stagno di Sa Curcurica was characterised by dense Erica scoparia and E. arborea stands, which were favoured by high fire activity. Fire incidence declined and evergreen broadleaved forests of Quercus ilex expanded at the beginning of the late Holocene. We relate the observed vegetation and fire dynamics to climatic change, specifically moister and cooler summers and drier and milder winters after 5,300 cal bp. Agricultural activities occurred since the Neolithic and intensified after c. 7,000 cal bp. Around 2,750 cal bp, a further decline of fire incidence and Erica communities occurred, while Quercus ilex expanded and open-land communities became more abundant. This vegetation shift coincided with the historically documented beginning of Phoenician period, which was followed by Punic and Roman civilizations in Sardinia. The vegetational change at around 2,750 cal bp was possibly advantaged by a further shift to moister and cooler summers and drier and milder winters. Triggers for climate changes at 5,300 and 2,750 cal bp may have been gradual, orbitally-induced changes in summer and winter insolation, as well as centennial-scale atmospheric reorganizations. Open evergreen broadleaved forests persisted until the twentieth century, when they were partly substituted by widespread artificial pine plantations. Our results imply that highly flammable Erica vegetation, as reconstructed for the mid-Holocene, could re-emerge as a dominant vegetation type due to increasing drought and fire, as anticipated under global change conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agricultural workers are exposed to various risks, including chemical agents, noise, and many other factors. One of the most characteristic and least known risk factors is constituted by the microclimatic conditions in the different phases of work (in field, in greenhouse, etc). A typical condition is thermal stress due to high temperatures during harvesting operations in open fields or in greenhouses. In Italy, harvesting is carried out for many hours during the day, mainly in the summer, with temperatures often higher than 30 degrees C. According to ISO 7243, these conditions can be considered dangerous for workers' health. The aim of this study is to assess the risks of exposure to microclimatic conditions (heat) for fruit and vegetable harvesters in central Italy by applying methods established by international standards. In order to estimate the risk for workers, the air temperature, radiative temperature, and air speed were measured using instruments in conformity with ISO 7726. Thermodynamic parameters and two more subjective parameters, clothing and the metabolic heat production rate related to the worker's physical activity, were used to calculate the predicted heat strain (PHS) for the exposed workers in conformity with ISO 7933. Environmental and subjective parameters were also measured for greenhouse workers, according to ISO 7243, in order to calculate the wet-bulb globe temperature (WBGT). The results show a slight risk for workers during manual harvesting in the field. On the other hand, the data collected in the greenhouses show that the risk for workers must not be underestimated. The results of the study show that, for manual harvesting work in climates similar to central Italy, it is essential to provide plenty of drinking water and acclimatization for the workers in order to reduce health risks. Moreover, the study emphasizes that the possible health risks for greenhouse workers increase from the month of April through July.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate is an important control on biomass burning, but the sensitivity of fire to changes in temperature and moisture balance has not been quantified. We analyze sedimentary charcoal records to show that the changes in fire regime over the past 21,000 yrs are predictable from changes in regional climates. Analyses of paleo- fire data show that fire increases monotonically with changes in temperature and peaks at intermediate moisture levels, and that temperature is quantitatively the most important driver of changes in biomass burning over the past 21,000 yrs. Given that a similar relationship between climate drivers and fire emerges from analyses of the interannual variability in biomass burning shown by remote-sensing observations of month-by-month burnt area between 1996 and 2008, our results signal a serious cause for concern in the face of continuing global warming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary pyomyositis is a bacterial infection occurring in skeletal muscle with no obvious local or adjacent cause. It is classically an infection of the tropics, although it is reported in temperate climates with increasing frequency. Tropical pyomyositis occurs predominantly in children aged between 2 and 5 and in adults aged between 20 and 45 years, whereas most temperate pyomyositis cases occur in adults. Using a magnetic resonance imaging scan, we made the diagnosis of staphylococcal pelvic pyomyositis in a Swiss term-born infant with an initial working diagnosis of septic hip osteoarthritis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of Pleistocene glacial cycles in forming the contemporary genetic structure of organisms has been well studied in China with a particular focus on the Tibetan Plateau. However, China has a complex topography and diversity of local climates, and how glacial cycles may have shaped the subtropical and tropical biota of the region remains mostly unaddressed. To investigate the factors that affected the phylogeography and population history of a widely distributed and nondeciduous forest species, we analysed morphological characters, mitochondrial DNA sequences and nuclear microsatellite loci in the Silver Pheasant (Lophura nycthemera). In a pattern generally consistent with phenotypic clusters, but not nominal subspecies, deeply divergent mitochondrial lineages restricted to different geographic regions were detected. Coalescent simulations indicated that the time of main divergence events corresponded to major glacial periods in the Pleistocene and gene flow was only partially lowered by drainage barriers between some populations. Intraspecific cytonuclear discordance was revealed in mitochondrial lineages from Hainan Island and the Sichuan Basin with evidence of nuclear gene flow from neighbouring populations into the latter. Unexpectedly, hybridization was revealed in Yingjiang between the Silver Pheasant and Kalij Pheasant (Lophura leucomelanos) with wide genetic introgression at both the mtDNA and nuclear levels. Our results highlight a novel phylogeographic pattern in a subtropical area generated from the combined effects of climate oscillation, partial drainage barriers and interspecific hybridization. Cytonuclear discordance combined with morphological differentiation implies that complex historical factors shaped the divergence process in this biodiversity hot spot area of southern China.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric fluxes of iron (Fe) over the past 200 kyr are reported for the coastal Antarctic Talos Dome ice core, based on acid leachable Fe concentrations. Fluxes of Fe to Talos Dome were consistently greater than those at Dome C, with the greatest difference observed during interglacial climates. We observe different Fe flux trends at Dome C and Talos Dome during the deglaciation and early Holocene, attributed to a combination of deglacial activation of dust sources local to Talos Dome and the reorganisation of atmospheric transport pathways with the retreat of the Ross Sea ice shelf. This supports similar findings based on dust particle sizes and fluxes and Rare Earth Element fluxes. We show that Ca and Fe should not be used as quantitative proxies for mineral dust, as they all demonstrate different deglacial trends at Talos Dome and Dome C. Considering that a 20 ppmv decrease in atmospheric CO2 at the coldest part of the last glacial maximum occurs contemporaneously with the period of greatest Fe and dust flux to Antarctica, we confirm that the maximum contribution of aeolian dust deposition to Southern Ocean sequestration of atmospheric CO2 is approximately 20 ppmv.�

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Indo-Pacific warm pool houses the largest zone of deep atmospheric convection on Earth and plays a critical role in global climate variations. Despite the region’s importance, changes in Indo-Pacific hydroclimate on orbital timescales remain poorly constrained. Here we present high-resolution geochemical records of surface runoff and vegetation from sediment cores fromLake Towuti, on the island of Sulawesi in central Indonesia, that continuously span the past 60,000 y.We show that wet conditions and rainforest ecosystems on Sulawesi present during marine isotope stage 3 (MIS3) and the Holocene were interrupted by severe drying between ∼33,000 and 16,000 y B.P. when Northern Hemisphere ice sheets expanded and global temperatures cooled. Our record reveals little direct influence of precessional orbital forcing on regional climate, and the similarity between MIS3 and Holocene climates observed in Lake Towuti suggests that exposure of the Sunda Shelf has a weaker influence on regional hydroclimate and terrestrial ecosystems than suggested previously. We infer that hydrological variability in this part of Indonesia varies strongly in response to high-latitude climate forcing, likely through reorganizations of the monsoons and the position of the intertropical convergence zone. These findings suggest an important role for the tropical western Pacific in amplifying glacial–interglacial climate variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Is numerical mimicry a third way of establishing truth? Kevin Heng received his M.S. and Ph.D. in astrophysics from the Joint Institute for Laboratory Astrophysics (JILA) and the University of Colorado at Boulder. He joined the Institute for Advanced Study in Princeton from 2007 to 2010, first as a Member and later as the Frank & Peggy Taplin Member. From 2010 to 2012 he was a Zwicky Prize Fellow at ETH Z¨urich (the Swiss Federal Institute of Technology). In 2013, he joined the Center for Space and Habitability (CSH) at the University of Bern, Switzerland, as a tenure-track assistant professor, where he leads the Exoplanets and Exoclimes Group. He has worked on, and maintains, a broad range of interests in astrophysics: shocks, extrasolar asteroid belts, planet formation, fluid dynamics, brown dwarfs and exoplanets. He coordinates the Exoclimes Simulation Platform (ESP), an open-source set of theoretical tools designed for studying the basic physics and chemistry of exoplanetary atmospheres and climates (www.exoclime.org). He is involved in the CHEOPS (Characterizing Exoplanet Satellite) space telescope, a mission approved by the European Space Agency (ESA) and led by Switzerland. He spends a fair amount of time humbly learning the lessons gleaned from studying the Earth and Solar System planets, as related to him by atmospheric, climate and planetary scientists. He received a Sigma Xi Grant-in-Aid of Research in 2006

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.