48 resultados para CLASSIFICATIONS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Degeneration of the intervertebral disc, sometimes associated with low back pain and abnormal spinal motions, represents a major health issue with high costs. A non-invasive degeneration assessment via qualitative or quantitative MRI (magnetic resonance imaging) is possible, yet, no relation between mechanical properties and T2 maps of the intervertebral disc (IVD) has been considered, albeit T2 relaxation time values quantify the degree of degeneration. Therefore, MRI scans and mechanical tests were performed on 14 human lumbar intervertebral segments freed from posterior elements and all soft tissues excluding the IVD. Degeneration was evaluated in each specimen using morphological criteria, qualitative T2 weighted images and quantitative axial T2 map data and stiffness was calculated from the load-deflection curves of in vitro compression, torsion, lateral bending and flexion/extension tests. In addition to mean T2, the OTSU threshold of T2 (TOTSU), a robust and automatic histogram-based method that computes the optimal threshold maximizing the distinction of two classes of values, was calculated for anterior, posterior, left and right regions of each annulus fibrosus (AF). While mean T2 and degeneration schemes were not related to the IVDs' mechanical properties, TOTSU computed in the posterior AF correlated significantly with those classifications as well as with all stiffness values. TOTSU should therefore be included in future degeneration grading schemes.
Resumo:
This book addresses two developments in the conceptualisation of citizenship that arise from the 'war on terror', namely the re-culturalisation of membership in a polity and the re-moralisationof access to rights. Taking an anthropological perspective, it traces the ways in which the trans-nationalisation of the 'war on terror' has affected notions of 'the dangerous other' in different political and social contexts, asking what changes in the ideas of the state and of the nation have been promoted by the emerging culture of security, and how these changes affect practices of citizenship and societal group relations.
Resumo:
We investigated the influence of playing a video game on children’s ability to distinguish between fantasy and reality. School-age children played a platform game for 15 min and then performed a fantasy/reality distinction task in which they were to judge whether images (from the platform game and from other games) were fantasy images or reality images. Unlike those in the control group (who played a memory game), the children in the experimental group showed a response bias toward mistakenly classifying reality images from the video game as fantasy images (as determined by means of an analysis based on signal detection theory). We conclude that playing the video game exerted a short-term influence on children’s ability to distinguish between fantasy and reality.
Resumo:
The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called "damage-associated molecular patterns" (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation.
Resumo:
The discovery of binary dendritic events such as local NMDA spikes in dendritic subbranches led to the suggestion that dendritic trees could be computationally equivalent to a 2-layer network of point neurons, with a single output unit represented by the soma, and input units represented by the dendritic branches. Although this interpretation endows a neuron with a high computational power, it is functionally not clear why nature would have preferred the dendritic solution with a single but complex neuron, as opposed to the network solution with many but simple units. We show that the dendritic solution has a distinguished advantage over the network solution when considering different learning tasks. Its key property is that the dendritic branches receive an immediate feedback from the somatic output spike, while in the corresponding network architecture the feedback would require additional backpropagating connections to the input units. Assuming a reinforcement learning scenario we formally derive a learning rule for the synaptic contacts on the individual dendritic trees which depends on the presynaptic activity, the local NMDA spikes, the somatic action potential, and a delayed reinforcement signal. We test the model for two scenarios: the learning of binary classifications and of precise spike timings. We show that the immediate feedback represented by the backpropagating action potential supplies the individual dendritic branches with enough information to efficiently adapt their synapses and to speed up the learning process.
Resumo:
The discovery of binary dendritic events such as local NMDA spikes in dendritic subbranches led to the suggestion that dendritic trees could be computationally equivalent to a 2-layer network of point neurons, with a single output unit represented by the soma, and input units represented by the dendritic branches. Although this interpretation endows a neuron with a high computational power, it is functionally not clear why nature would have preferred the dendritic solution with a single but complex neuron, as opposed to the network solution with many but simple units. We show that the dendritic solution has a distinguished advantage over the network solution when considering different learning tasks. Its key property is that the dendritic branches receive an immediate feedback from the somatic output spike, while in the corresponding network architecture the feedback would require additional backpropagating connections to the input units. Assuming a reinforcement learning scenario we formally derive a learning rule for the synaptic contacts on the individual dendritic trees which depends on the presynaptic activity, the local NMDA spikes, the somatic action potential, and a delayed reinforcement signal. We test the model for two scenarios: the learning of binary classifications and of precise spike timings. We show that the immediate feedback represented by the backpropagating action potential supplies the individual dendritic branches with enough information to efficiently adapt their synapses and to speed up the learning process.
Resumo:
The majority of histopathological classifications of primary chronic viral hepatitis and recurrence of HCV infection in liver transplants is based on the histological activity index (HAI) introduced by Knodell et al in 1981; however, correlation between HAI and clinical/laboratory data is poor. Therefore, the aim of this study was to present a modification of HAI (mHAI) adapted to distinct features of graft infection, and to evaluate its usefulness in the description of disease activity.
Resumo:
Perennial snow and ice (PSI) extent is an important parameter of mountain environments with regard to its involvement in the hydrological cycle and the surface energy budget. We investigated interannual variations of PSI in nine mountain regions of interest (ROI) between 2000 and 2008. For that purpose, a novel MODIS data set processed at the Canada Centre for Remote Sensing at 250 m spatial resolution was utilized. The extent of PSI exhibited significant interannual variations, with coefficients of variation ranging from 5% to 81% depending on the ROI. A strong negative relationship was found between PSI and positive degree-days (threshold 0°C) during the summer months in most ROIs, with linear correlation coefficients (r) being as low as r = −0.90. In the European Alps and Scandinavia, PSI extent was significantly correlated with annual net glacier mass balances, with r = 0.91 and r = 0.85, respectively, suggesting that MODIS-derived PSI extent may be used as an indicator of net glacier mass balances. Validation of PSI extent in two land surface classifications for the years 2000 and 2005, GLC-2000 and Globcover, revealed significant discrepancies of up to 129% for both classifications. With regard to the importance of such classifications for land surface parameterizations in climate and land surface process models, this is a potential source of error to be investigated in future studies. The results presented here provide an interesting insight into variations of PSI in several ROIs and are instrumental for our understanding of sensitive mountain regions in the context of global climate change assessment.
Resumo:
In 2011, the Tumour Node Metastasis (TNM) staging system still remains the gold standard for stratifying colorectal cancer (CRC) patients into prognostic subgroups, and is considered a solid basis for treatment management. Nevertheless, there is still a challenge with regard to therapeutic strategy; stage II patients are not typically selected for postoperative adjuvant chemotherapy, although some stage II patients have a comparable outcome to stage III patients who, themselves do receive such treatment. Consequently, there has been an inundation of 'prognostic biomarker' studies aiming to improve the prognostic stratification power of the TNM staging system. Most proposed biomarkers are not implemented because of lack of reproducibility, validation and standardisation. This problem can be partially resolved by following the REMARK guidelines. In search of novel prognostic factors for patients with CRC, one might glance at a table in the book entitled 'Prognostic Factors in Cancer' published by the International Union against Cancer (UICC) in 2006, in which TNM stage, L and V classifications are considered 'essential' prognostic factors, whereas tumour grade, perineural invasion, tumour budding and tumour-border configuration among others are proposed as 'additional' prognostic factors. Histopathology reports normally include the 'essential' features and are accompanied by tumour grade, histological subtype and information on perineural invasion, but interestingly, the tumour-border configuration (i.e., growth pattern) and especially tumour budding are rarely reported. Although scoring systems such as the 'BRE' in breast and 'Gleason' in prostate cancer are solidly based on histomorphological features and used in daily practice, no such additional scoring system to complement TNM staging is available for CRC. Regardless of differences in study design and methods for tumour-budding assessment, the prognostic power of tumour budding has been confirmed by dozens of study groups worldwide, suggesting that tumour budding may be a valuable candidate for inclusion into a future prognostic scoring system for CRC. This mini-review therefore attempts to present a short and concise overview on tumour budding, including morphological, molecular and prognostic aspects underlining its inter-disciplinary relevance.
Resumo:
Eosinophilia is an important indicator of various neoplastic and nonneoplastic conditions. Depending on the underlying disease and mechanisms, eosinophil infiltration can lead to organ dysfunction, clinical symptoms, or both. During the past 2 decades, several different classifications of eosinophilic disorders and related syndromes have been proposed in various fields of medicine. Although criteria and definitions are, in part, overlapping, no global consensus has been presented to date. The Year 2011 Working Conference on Eosinophil Disorders and Syndromes was organized to update and refine the criteria and definitions for eosinophilic disorders and to merge prior classifications in a contemporary multidisciplinary schema. A panel of experts from the fields of immunology, allergy, hematology, and pathology contributed to this project. The expert group agreed on unifying terminologies and criteria and a classification that delineates various forms of hypereosinophilia, including primary and secondary variants based on specific hematologic and immunologic conditions, and various forms of the hypereosinophilic syndrome. For patients in whom no underlying disease or hypereosinophilic syndrome is found, the term hypereosinophilia of undetermined significance is introduced. The proposed novel criteria, definitions, and terminologies should assist in daily practice, as well as in the preparation and conduct of clinical trials.
Resumo:
The most important objective of clinical classifications of slipped capital femoral epiphysis (SCFE) is to identify hips associated with a high risk of avascular necrosis (AVN)--so-called unstable or acute slips; however, closed surgery makes confirmation of physeal stability difficult. Performing the capital realignment procedure in SCFE treatment we observed that clinical estimation of physeal stability did not always correlate with intraoperative findings at open surgery. This motivated us to perform a systematic comparison of the clinical classification systems with the intraoperative observations.
Resumo:
Eosinophils and their products play an essential role in the pathogenesis of various reactive and neoplastic disorders. Depending on the underlying disease, molecular defect and involved cytokines, hypereosinophilia may develop and may lead to organ damage. In other patients, persistent eosinophilia is accompanied by typical clinical findings, but the causative role and impact of eosinophilia remain uncertain. For patients with eosinophil-mediated organ pathology, early therapeutic intervention with agents reducing eosinophil counts can be effective in limiting or preventing irreversible organ damage. Therefore, it is important to approach eosinophil disorders and related syndromes early by using established criteria, to perform all appropriate staging investigations, and to search for molecular targets of therapy. In this article, we review current concepts in the pathogenesis and evolution of eosinophilia and eosinophil-related organ damage in neoplastic and non-neoplastic conditions. In addition, we discuss classifications of eosinophil disorders and related syndromes as well as diagnostic algorithms and standard treatment for various eosinophil-related disorders.