3 resultados para CIRCADIAN PHASE
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The aim of this descriptive analysis was to examine sleep timing, circadian phase, and phase angle of entrainment across adolescence in a longitudinal study design. Ninety-four adolescents participated; 38 (21 boys) were 9-10 years ("younger cohort") and 56 (30 boys) were 15-16 years ("older cohort") at the baseline assessment. Participants completed a baseline and then follow-up assessments approximately every six months for 2.5 years. At each assessment, participants wore a wrist actigraph for at least one week at home to measure self-selected sleep timing before salivary dim light melatonin onset (DLMO) phase - a marker of the circadian timing system - was measured in the laboratory. Weekday and weekend sleep onset and offset and weekend-weekday differences were derived from actigraphy. Phase angles were the time durations from DLMO to weekday sleep onset and offset times. Each cohort showed later sleep onset (weekend and weekday), later weekend sleep offset, and later DLMO with age. Weekday sleep offset shifted earlier with age in the younger cohort and later in the older cohort after age 17. Weekend-weekday sleep offset differences increased with age in the younger cohort and decreased in the older cohort after age 17. DLMO to sleep offset phase angle narrowed with age in the younger cohort and became broader in the older cohort. The older cohort had a wider sleep onset phase angle compared to the younger cohort; however, an age-related phase angle increase was seen in the younger cohort only. Individual differences were seen in these developmental trajectories. This descriptive study indicated that circadian phase and self-selected sleep delayed across adolescence, though school-day sleep offset advanced until no longer in high school, whereupon offset was later. Phase angle changes are described as an interaction of developmental changes in sleep regulation interacting with psychosocial factors (e.g., bedtime autonomy)
Resumo:
The circadian clock orchestrates many aspects of human physiology, and disruption of this clock has been implicated in various pathologies, ranging from cancer to metabolic syndrome and diabetes. Although there is evidence that metabolism and the circadian clockwork are intimately linked on a transcriptional level, whether these effects are directly under clock control or are mediated by the rest-activity cycle and the timing of food intake is unclear. To answer this question, we conducted an unbiased screen in human subjects of the metabolome of blood plasma and saliva at different times of day. To minimize indirect effects, subjects were kept in a 40-h constant routine of enforced posture, constant dim light, hourly isocaloric meals, and sleep deprivation. Under these conditions, we found that ~15% of all identified metabolites in plasma and saliva were under circadian control, most notably fatty acids in plasma and amino acids in saliva. Our data suggest that there is a strong direct effect of the endogenous circadian clock on multiple human metabolic pathways that is independent of sleep or feeding. In addition, they identify multiple potential small-molecule biomarkers of human circadian phase and sleep pressure.
Resumo:
OBJECTIVE: To compare the effect of bimatoprost and the fixed combination of latanoprost and timolol (LTFC) on 24-hour mean intraocular pressure (IOP) after patients are switched from a nonfixed combination of latanoprost and timolol. DESIGN: Randomized, double-masked, multicenter clinical trial. PARTICIPANTS: Two hundred patients with glaucoma or ocular hypertension. METHODS: Included were patients who were controlled (IOP < 21 mmHg) on the nonfixed combination of latanoprost and timolol for at least 3 months before the baseline visit or patients on monotherapy with either latanoprost or timolol who were eligible for dual therapy not being fully controlled on monotherapy. The latter group of patients underwent a 6-week wash-in phase with the nonfixed combination of latanoprost and timolol before baseline IOP determination and study inclusion. Supine and sitting position IOPs were recorded at 8 pm, midnight, 5 am, 8 am, noon, and 4 pm at baseline, week 6, and week 12 visits. MAIN OUTCOME MEASURE: An analysis of covariance model was used for a noninferiority test of the primary efficacy variable, with mean area under the 24-hour IOP curve after 12 weeks of treatment as response variable and treatment, center, and baseline IOP as factors. A secondary analysis was performed on the within-treatment change from baseline. RESULTS: Mean baseline IOPs were 16.3+/-3.3 mmHg and 15.5+/-2.9.mmHg in the bimatoprost and LTFC groups, respectively. At week 12, mean IOPs were 16.1+/-2.5 mmHg for the bimatoprost group and 16.3+/-3.7 mmHg for the LTFC group, and no significant difference between the 2 treatment groups could be found. As compared with baseline, mean IOP increased by 0.3+/-3.6 mmHg during the day and decreased by 0.8+/-3.8 mmHg during the night in the bimatoprost group, whereas there were increases of 1.43+/-2.6 mmHg and 0.14+/-3.2 mmHg in the LTFC group, respectively. CONCLUSIONS: Bimatoprost is not inferior to the LTFC in maintaining IOP at a controlled level during a 24-hour period in patients switched from the nonfixed combination of latanoprost and timolol.