2 resultados para CHROMOSOME STABILITY
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This study investigated the correlation of the extent of chromosomal aberrations including uniparental disomies (UPDs) by SNP-chip analysis and FISH to telomere length in 46 patients with CLL. CLL harboring high risk aberrations, i.e. deletions of 11q22-23 or 17p13, had significantly shorter telomeres (higher ΔTL) compared to patients with CLL without such abnormalities. Patients with high chromosomal aberration rates had a worse overall survival compared to cases with lower aberration rates. Interestingly, however, an increase was found in the number of UPDs with shorter telomeres. These findings support the idea that telomeres in CLL cells play a role in the overall chromosome stability and could be involved in the occurrence of UPDs.
Resumo:
The hairpin structure at the 3' end of animal histone mRNAs controls histone RNA 3' processing, nucleocytoplasmic transport, translation and stability of histone mRNA. Functionally overlapping, if not identical, proteins binding to the histone RNA hairpin have been identified in nuclear and polysomal extracts. Our own results indicated that these hairpin binding proteins (HBPs) bind their target RNA as monomers and that the resulting ribonucleoprotein complexes are extremely stable. These features prompted us to select for HBP-encoding human cDNAs by RNA-mediated three-hybrid selection in Saccharomyces cerevesiae. Whole cell extract from one selected clone contained a Gal4 fusion protein that interacted with histone hairpin RNA in a sequence- and structure-specific manner similar to a fraction enriched for bovine HBP, indicating that the cDNA encoded HBP. DNA sequence analysis revealed that the coding sequence did not contain any known RNA binding motifs. The HBP gene is composed of eight exons covering 19.5 kb on the short arm of chromosome 4. Translation of the HBP open reading frame in vitro produced a 43 kDa protein with RNA binding specificity identical to murine or bovine HBP. In addition, recombinant HBP expressed in S. cerevisiae was functional in histone pre-mRNA processing, confirming that we have indeed identified the human HBP gene.