19 resultados para CHEMICAL STRUCTURES

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quassinoids are a group of compounds extracted from plants of the Simaroubaceae family, which have been used for many years in folk medicine. These molecules gained notoriety after the initial discovery of the anti-leukemic activity of one member, bruceantin, in 1975. Currently over 150 quassinoids have been isolated and classified based on their chemical structures and biological properties investigated in vitro and in vivo. Many molecules display a wide range of inhibitory effects, including anti-inflammatory, anti-viral, anti-malarial and anti-proliferative effects on various tumor cell types. Although often the exact mechanism of action of the single agents remains unclear, some agents have been shown to affect protein synthesis in general, or specifically HIF-1α and MYC, membrane polarization and the apoptotic machinery. Considering that future research into chemical modifications is likely to generate more active and less toxic derivatives of natural quassinoids, this family represents a powerful source of promising small molecules targeting key prosurvival signaling pathways relevant for diverse pathologies. Here, we review available knowledge of functionality and possible applications of quassinoids and quassinoid derivatives, spanning traditional use to the potential impact on modern medicine as cancer therapeutics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fifty members of a novel class of antimicrobial compounds, 2-(4-R-phenoxymethyl)benzoic acid thioureides, were synthesized and characterized with respect to their activities against three parasites of human relevance, namely the protozoa Giardia lamblia and Toxoplasma gondii, and the larval (metacestode) stage of the tapeworm Echinococcus multilocularis. To determine the selective toxicity of these compounds, the human colon cancer cell line Caco2 and primary cultures of human foreskin fibroblasts (HFF) were also investigated. The new thioureides were obtained in a three-step-reaction process and subsequently characterized by their physical constants (melting point, solubility). The chemical structures were elucidated by (1)H NMR, (13)C NMR, IR spectral methods and elemental analysis. The analyses confirmed the final and intermediate compound structures and the synthesis. The compounds were then tested on the parasites in vitro. All thioureides, except two compounds with a nitro group, were totally ineffective against Giardia lamblia. 23 compounds inhibited the proliferation of T. gondii, three of them with an IC(50) of approximately 1 microM. The structural integrity of E. multilocularis metacestodes was affected by 22 compounds. In contrast, HFF were not susceptible to any of these thioureides, while Caco2 cells were affected by 17 compounds, two of them inhibiting proliferation with an IC(50) in the micromolar range. Thioureides may thus present a promising class of anti-infective agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report on The Potential of Mode of Action (MoA) Information Derived from Non-testing and Screening Methodologies to Support Informed Hazard Assessment, resulted from a workshop organised within OSIRIS (Optimised Strategies for Risk Assessment of Industrial Chemicals through Integration of Non-test and Test Information), a project partly funded by the EU Commission within the Sixth Framework Programme. The workshop was held in Liverpool, UK, on 30 October 2008, with 35 attendees. The goal of the OSIRIS project is to develop integrated testing strategies (ITS) fit for use in the REACH system, that would enable a significant increase in the use of non-testing information for regulatory decision making, and thus minimise the need for animal testing. One way to improve the evaluation of chemicals may be through categorisation by way of mechanisms or modes of toxic action. Defining such groups can enhance read-across possibilities and priority settings for certain toxic modes or chemical structures responsible for these toxic modes. Overall, this may result in a reduction of in vivo testing on organisms, through combining available data on mode of action and a focus on the potentially most-toxic groups. In this report, the possibilities of a mechanistic approach to assist in and guide ITS are explored, and the differences between human health and environmental areas are summarised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain fatty acid N-alkyl amides from the medicinal plant Echinacea activate cannabinoid type-2 (CB2) receptors. In this study we show that the CB2-binding Echinacea constituents dodeca-2E,4E-dienoic acid isobutylamide (1) and dodeca-2E,4E,8Z,10Z-tetraenoic acid isobutylamide (2) form micelles in aqueous medium. In contrast, micelle formation is not observed for undeca-2E-ene-8,10-diynoic acid isobutylamide (3), which does not bind to CB2, or structurally related endogenous cannabinoids, such as arachidonoyl ethanolamine (anandamide). The critical micelle concentration (CMC) range of 1 and 2 was determined by fluorescence spectroscopy as 200-300 and 7400-10000 nM, respectively. The size of premicelle aggregates, micelles, and supermicelles was studied by dynamic light scattering. Microscopy images show that compound 1, but not 2, forms globular and rod-like supermicelles with radii of approximately 75 nm. The self-assembling N-alkyl amides partition between themselves and the CB2 receptor, and aggregation of N-alkyl amides thus determines their in vitro pharmacological effects. Molecular mechanics by Monte Carlo simulations of the aggregation process support the experimental data, suggesting that both 1 and 2 can readily aggregate into premicelles, but only 1 spontaneously assembles into larger aggregates. These findings have important implications for biological studies with this class of compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epothilones are macrocyclic bacterial natural products with potent microtubule-stabilizing and antiproliferative activity. They have served as successful lead structures for the development of several clinical candidates for anticancer therapy. However, the structural diversity of this group of clinical compounds is rather limited, as their structures show little divergence from the original natural product leads. Our own research has explored the question of whether epothilones can serve as a basis for the development of new structural scaffolds, or chemotypes, for microtubule stabilization that might serve as a basis for the discovery of new generations of anticancer drugs. We have elaborated a series of epothilone-derived macrolactones whose overall structural features significantly deviate from those of the natural epothilone scaffold and thus define new structural families of microtubule-stabilizing agents. Key elements of our hypermodification strategy are the change of the natural epoxide geometry from cis to trans, the incorporation of a conformationally constrained side chain, the removal of the C3-hydroxyl group, and the replacement of C12 with nitrogen. So far, this approach has yielded analogs 30 and 40 that are the most advanced, the most rigorously modified, structures, both of which are potent antiproliferative agents with low nanomolar activity against several human cancer cell lines in vitro. The synthesis was achieved through a macrolactone-based strategy or a high-yielding RCM reaction. The 12-aza-epothilone ("azathilone" 40) may be considered a "non-natural" natural product that still retains most of the overall structural characteristics of a true natural product but is structurally unique, because it lies outside of the general scope of Nature's biosynthetic machinery for polyketide synthesis. Like natural epothilones, both 30 and 40 promote tubulin polymerization in vitro and at the cellular level induce cell cycle arrest in mitosis. These facts indicate that cancer cell growth inhibition by these compounds is based on the same mechanistic underpinnings as those for natural epothilones. Interestingly, the 9,10-dehydro analog of 40 is significantly less active than the saturated parent compound, which is contrary to observations for natural epothilones B or D. This may point to differences in the bioactive conformations of N-acyl-12-aza-epothilones like 40 and natural epothilones. In light of their distinct structural features, combined with an epothilone-like (and taxol-like) in vitro biological profile, 30 and 40 can be considered as representative examples of new chemotypes for microtubule stabilization. As such, they may offer the same potential for pharmacological differentiation from the original epothilone leads as various newly discovered microtubule-stabilizing natural products with macrolactone structures, such as laulimalide, peloruside, or dictyostatin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CopA copper ATPase of Enterococcus hirae belongs to the family of heavy metal pumping CPx-type ATPases and shares 43% sequence similarity with the human Menkes and Wilson copper ATPases. Due to a lack of suitable protein crystals, only partial three-dimensional structures have so far been obtained for this family of ion pumps. We present a structural model of CopA derived by combining topological information obtained by intramolecular cross-linking with molecular modeling. Purified CopA was cross-linked with different bivalent reagents, followed by tryptic digestion and identification of cross-linked peptides by mass spectrometry. The structural proximity of tryptic fragments provided information about the structural arrangement of the hydrophilic protein domains, which was integrated into a three-dimensional model of CopA. Comparative modeling of CopA was guided by the sequence similarity to the calcium ATPase of the sarcoplasmic reticulum, Serca1, for which detailed structures are available. In addition, known partial structures of CPx-ATPase homologous to CopA were used as modeling templates. A docking approach was used to predict the orientation of the heavy metal binding domain of CopA relative to the core structure, which was verified by distance constraints derived from cross-links. The overall structural model of CopA resembles the Serca1 structure, but reveals distinctive features of CPx-type ATPases. A prominent feature is the positioning of the heavy metal binding domain. It features an orientation of the Cu binding ligands which is appropriate for the interaction with Cu-loaded metallochaperones in solution. Moreover, a novel model of the architecture of the intramembranous Cu binding sites could be derived.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anionic cluster Pt-19(CO)(22)](4-) (1), of pentagonal symmetry, reacts with CO and AuPPh3+ fragments. Upon increasing the Au:Pt-19, molar ratio, different species are sequentially formed, but only the last two members of the series could be characterized by X-ray diffraction, namely, Pt-19(CO)(24)(mu(4)-AuPPh3)(3)](-) (2) and Pt-19(CO)(24){mu(4)-Au-2(PPh3)(2)}(2)] (3).The metallic framework of the starting cluster is completely modified after the addition of CO and AuL+, and both products display the same platinum core of trigonal symmetry, with closely packed metal atoms. The three AuL+ units cap three different square faces in 2, whereas four AuL+ fragments are grouped in two independent bimetallic units in the neutral cluster 3. Electrochemical and spectroelectrochemical studies on 2 showed that its redox ability is comparable with that of the homometallic 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using explicitly-correlated coupled-cluster theory with single and double excitations, the intermolecular distances and interaction energies of the T-shaped imidazole⋯⋯benzene and pyrrole⋯⋯benzene complexes have been computed in a large augmented correlation-consistent quadruple-zeta basis set, adding also corrections for connected triple excitations and remaining basis-set-superposition errors. The results of these computations are used to assess other methods such as Møller–Plesset perturbation theory (MP2), spin-component-scaled MP2 theory, dispersion-weighted MP2 theory, interference-corrected explicitly-correlated MP2 theory, dispersion-corrected double-hybrid density-functional theory (DFT), DFT-based symmetry-adapted perturbation theory, the random-phase approximation, explicitly-correlated ring-coupled-cluster-doubles theory, and double-hybrid DFT with a correlation energy computed in the random-phase approximation.