2 resultados para CHEMICAL FUNCTIONALIZATION

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Click chemistry is a powerful technology for the functionalization of therapeutic proteins with effector moieties, because of its potential for bio-orthogonal, regio-selective, and high-yielding conjugation under mild conditions. Designed Ankyrin Repeat Proteins (DARPins), a novel class of highly stable binding proteins, are particularly well suited for the introduction of clickable methionine surrogates such as azidohomoalanine (Aha) or homopropargylglycine (Hpg), since the DARPin scaffold can be made methionine-free by an M34L mutation in the N-cap which fully maintains the biophysical properties of the protein. A single N-terminal azidohomoalanine, replacing the initiator Met, is incorporated in high yield, and allows preparation of "clickable" DARPins at about 30 mg per liter E. coli culture, fully retaining stability, specificity, and affinity. For a second modification, we introduced a cysteine at the C-terminus. Such DARPins could be conveniently site-specifically linked to two moieties, polyethylene glycol (PEG) to the N-terminus and the fluorophore Alexa488 to the C-terminus. We present a DARPin selected against the epithelial cell adhesion molecule (EpCAM) with excellent properties for tumor targeting as an example. We used these doubly modified molecules to measure binding kinetics on tumor cells and found that PEGylation has no effect on dissociation rate, but slightly decreases the association rate and the maximal number of cell-bound DARPins, fully consistent with our previous model of PEG action obtained in vitro. Our data demonstrate the benefit of click chemistry for site-specific modification of binding proteins like DARPins to conveniently add several functional moieties simultaneously for various biomedical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The widespread dietary plant sesquiterpene hydrocarbon β-caryophyllene (1) is a CB2 cannabinoid receptor-specific agonist showing anti-inflammatory and analgesic effects in vivo. Structural insights into the pharmacophore of this hydrocarbon, which lacks functional groups other than double bonds, are missing. A structure-activity study provided evidence for the existence of a well-defined sesquiterpene hydrocarbon binding site in CB2 receptors, highlighting its exquisite sensitivity to modifications of the strained endocyclic double bond of 1. While most changes on this element were detrimental for activity, ring-opening cross metathesis of 1 with ethyl acrylate followed by amide functionalization generated a series of new monocyclic amides (11a, 11b, 11c) that not only retained the CB2 receptor functional agonism of 1 but also reversibly inhibited fatty acid amide hydrolase (FAAH), the major endocannabinoid degrading enzyme, without affecting monoacylglycerol lipase (MAGL) and α,β hydrolases 6 and 12. Intriguingly, further modification of this monocyclic scaffold generated the FAAH- and endocannabinoid substrate-specific cyclooxygenase-2 (COX-2) dual inhibitors 11e and 11f, which are probes with a novel pharmacological profile. Our study shows that by removing the conformational constraints induced by the medium-sized ring and by introducing functional groups in the sesquiterpene hydrocarbon 1, a new scaffold with pronounced polypharmacological features within the endocannabinoid system could be generated. The structural and functional repertoire of cannabimimetics and their yet poorly understood intrinsic promiscuity may be exploited to generate novel probes and ultimately more effective drugs.