45 resultados para CHARGE-TRANSFER REACTIONS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and the photophysical properties of the complex [Ru(TTF-dppz)(2)(Aqphen)](2+) (TTF = tetrathiafulvalene, dppz = dipyrido-[3,2-a:2',3'-c]phenazine, Aqphen = anthraquinone fused to phenanthroline via a pyrazine bridge) are described. In this molecular triad excitation into the metal ligand charge transfer bands results in the creation of a long-lived charge separated state with TTF acting as electron donor and anthraquinone as terminal acceptor. The lifetime of the charge-separated state is 400 ns in dichloromethane at room temperature. A mechanism for the charge separation involving an intermediate charge-separated state is proposed based on transient absorption spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intermolecular electron-transfer reactions have a crucial role in biology, solution chemistry and electrochemistry. The first step of such reactions is the expulsion of the electron to the solvent, whose mechanism is determined by the structure and dynamical response of the latter. Here we visualize the electron transfer to water using ultrafast fluorescence spectroscopy with polychromatic detection from the ultraviolet to the visible region, upon photo-excitation of the so-called charge transfer to solvent states of aqueous iodide. The initial emission is short lived (~60 fs) and it relaxes to a broad distribution of lower-energy charge transfer to solvent states upon rearrangement of the solvent cage. This distribution reflects the inhomogeneous character of the solvent cage around iodide. Electron ejection occurs from the relaxed charge transfer to solvent states with lifetimes of 100–400 fs that increase with decreasing emission energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the crystal structure of the title compound (systematic name: 2,3-dichlorobenzene-1,4-diol 2,3-dichlorocyclohexa-2,5-diene-1,4-dione monohydrate), C(6)H(4)Cl(2)O(2)center dot C(6)H(2)Cl(2)O(2)center dot H(2)O, the 2,3-dichloro-1,4-hydroquinone donor (D) and the 2,3-dichloro-1,4-benzoquinone acceptor (A) molecules form alternating stacks along [100]. Their molecular planes [maximum deviations for non-H atoms: 0.0133 (14) (D) and 0.0763 (14) angstrom (A)] are inclined to one another by 1.45 (3)degrees and are thus almost parallel. There are pi-pi interactions involving the D and A molecules, with centroid-centroid distances of 3.5043 (9) and 3.9548 (9) angstrom. Intermolecular O-H center dot center dot center dot O hydrogen bonds involving the water molecule and the hydroxy and ketone groups lead to the formation of two-dimensional networks lying parallel to (001). These networks are linked by C-H center dot center dot center dot O interactions, forming a three-dimensional structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high resolution luminescence study of NaLaF4: 1%Pr3+, 5%Yb3+ and NaLaF4: 1%Ce3+, 5%Yb3+ in the UV to NIR spectral range using a InGaAs detector and a fourier transform interferometer is reported. Although the Pr3+(P-3(0) -> (1)G(4), Yb3+(F-2(7/2) -> F-2(5/2)) energy transfer step takes place, significant Pr3+ (1)G(4) emission around 993, 1330 and 1850 nm is observed. No experimental proof for the second energy transfer step in the down-conversion process between Pr3+ and Yb3+ can be given. In the case of NaLaF4: Ce3+, Yb3+ it is concluded that the observed Yb3+ emission upon Ce3+ 5d excitation is the result of a charge transfer process instead of down-conversion. (C) 2010 Elsevier B.V. All rights reserved.