49 resultados para CEREBRAL-CORTEX
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This study compared the effects of isoflurane in pigs (n=10 Yorkshire-Landrace cross) and dairy goats (n=10) by evaluation of electroencephalographic (EEG) burst suppression thresholds (BST) in the cerebral cortex and minimum alveolar concentration (MAC) values in the spinal cord. The study also investigated whether individual MAC values can predict the effects of isoflurane on the cerebral cortex. MAC values and BST/MAC ratios were significantly different between species. Inhibition of movement by isoflurane may be less effective in pigs than in goats. No significant correlation was found between individual MAC and BST values, indicating that in single animals the individual MAC poorly reflects the cerebrocortical depressant effect of isoflurane in pigs and goats.
Resumo:
Matrix metalloproteinases (MMPs) and TNF-alpha converting enzyme (TACE) contribute to the pathophysiology of bacterial meningitis. To date, MMP-inhibitors studied in models of meningitis were compromised by their hydrophobic nature. We investigated the pharmacokinetics and the effect of TNF484, a water-soluble hydroxamate-based inhibitor of MMP and TACE, on disease parameters and brain damage in a neonatal rat model of pneumococcal meningitis. At 1 mg/kg q6h TNF484 reduced soluble TNF-alpha and the collagen degradation product hydroxyproline in the cerebrospinal fluid. Clinically, TNF484 attenuated the incidence of seizures and was neuroprotective in the cortex. Water-soluble MMP-inhibitors may hold promise in the therapy of bacterial meningitis.
Resumo:
Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully measured shrinkage and analyzed its influence on morphological parameters. SSNs had mostly eccentric morphology, whereas SPNs were nearly radially symmetric. Most asymmetric neurons were located near the barrel border. The axonal projections, analyzed at the level of layer 4, were mostly restricted to a single barrel except for those of 3 interbarrel projection neurons. Comparing voxel representations of dendrites and axon collaterals of the same neuron revealed a close overlap of dendritic and axonal fields, more pronounced in SSNs versus SPNs and considerably stronger in spiny L4 neurons versus extragranular pyramidal cells. These observations suggest that within a barrel dendrites and axons of individual excitatory cells are organized in subcolumns that may confer receptive field properties such as directional selectivity to higher layers, whereas the interbarrel projections challenge our view of barrels as completely independent processors of thalamic input.
Resumo:
RATIONALE: High levels of calcium independent phospholipase A2 (iPLA2) are present in certain regions of the brain, including the cerebral cortex, striatum, and cerebellum (Ong et al. 2005). OBJECTIVES: The present study was carried out to elucidate a possible role of the enzyme in the motor system. METHODS: The selective iPLA2 inhibitor bromoenol lactone (BEL), the nonselective PLA2 inhibitor methyl arachidonyl fluorophosphonate (MAFP), and an antisense oligonucleotide were used to interfere with iPLA2 activity in various components of the motor system. Control animals received injections of carrier (phosphate buffered saline, PBS) at the same locations. The number of vacuous chewing movements (VCM) was counted from 1 to 14 days after injection. RESULTS: Rats that received BEL and high-dose MAFP injections in the striatum, thalamus, and motor cortex, but not the cerebellum, showed significant increase in VCM, compared to those injected with PBS at these locations. BEL-induced VCM were blocked by intramuscular injections of the anticholinergic drug, benztropine. Increased VCM was also observed after intrastriatal injection of antisense oligonucleotide to iPLA2. The latter caused a decrease in striatal iPLA2 levels, confirming a role of decreased enzyme activity in the appearance of VCM. CONCLUSIONS: These results suggest an important role for iPLA2 in the cortex-striatum-thalamus-cortex circuitry. It is postulated that VCM induced by iPLA2 inhibition may be a model of human parkinsonian tremor.
Resumo:
The rat double-SAH model is one of the standard models to simulate delayed cerebral vasospasm (CVS) in humans. However, the proof of delayed ischemic brain damage is missing so far. Our objective was, therefore, to determine histological changes in correlation with the development of symptomatic and perfusion weighted imaging (PWI) proven CVS in this animal model. CVS was induced by injection of autologous blood in the cisterna magna of 22 Sprague-Dawley rats. Histological changes were analyzed on day 3 and day 5. Cerebral blood flow (CBF) was assessed by PWI at 3 tesla magnetic resonance (MR) tomography. Neuronal cell count did not differ between sham operated and SAH rats in the hippocampus and the cerebral cortex on day 3. In contrast, on day 5 after SAH the neuronal cell count was significantly reduced in the hippocampus (p<0.001) and the inner cortical layer (p=0.03). The present investigation provides quantitative data on brain tissue damage in association with delayed CVS for the first time in a rat SAH model. Accordingly, our data suggest that the rat double-SAH model may be suitable to mimic delayed ischemic brain damage due to CVS and to investigate the neuroprotective effects of drugs.
Resumo:
Patients with homonymous hemianopia have altered visual search patterns, but it is unclear how rapidly this develops and whether it reflects a strategic adaptation to altered perception or plastic changes to tissue damage. To study the temporal dynamics of adaptation alone, we used a gaze-contingent display to simulate left or right hemianopia in 10 healthy individuals as they performed 25 visual search trials. Visual search was slower and less accurate in hemianopic than in full-field viewing. With full-field viewing, there were improvements in search speed, fixation density, and number of fixations over the first 9 trials, then stable performance. With hemianopic viewing, there was a rapid shift of fixation into the blind field over the first 5-7 trials, followed by continuing gradual improvements in completion time, number of fixations, and fixation density over all 25 trials. We conclude that in the first minutes after onset of hemianopia, there is a biphasic pattern of adaptation to altered perception: an early rapid qualitative change that shifts visual search into the blind side, followed by more gradual gains in the efficiency of using this new strategy, a pattern that has parallels in other studies of motor learning.
Resumo:
Behavioral studies suggest that women and men differ in the strategic elaboration of verbally encoded information especially in the absence of external task demand. However, measuring such covert processing requires other than behavioral data. The present study used event-related potentials to compare sexes in lower and higher order semantic processing during the passive reading of semantically related and unrelated word pairs. Women and men showed the same early context effect in the P1-N1 transition period. This finding indicates that the initial lexical-semantic access is similar in men and women. In contrast, sexes differed in higher order semantic processing. Women showed an earlier and longer lasting context effect in the N400 accompanied by larger signal strength in temporal networks similarly recruited by men and women. The results suggest that women spontaneously conduct a deeper semantic analysis. This leads to faster processing of related words in the active neural networks as reflected in a shorter stability of the N400 map in women. Taken together, the findings demonstrate that there is a selective sex difference in the controlled semantic analysis during passive word reading that is not reflected in different functional organization but in the depth of processing.
Resumo:
In the present in situ hybridization and immunocytochemical studies in the mouse central nervous system (CNS), a strong expression of spastin mRNA and protein was found in Purkinje cells and dentate nucleus in the cerebellum, in hippocampal principal cells and hilar neurons, in amygdala, substantia nigra, striatum, in the motor nuclei of the cranial nerves and in different layers of the cerebral cortex except piriform and entorhinal cortices where only neurons in layer II were strongly stained. Spastin protein and mRNA were weakly expressed in most of the thalamic nuclei. In selected human brain regions such as the cerebral cortex, cerebellum, hippocampus, amygdala, substania nigra and striatum, similar results were obtained. Electron microscopy showed spastin immunopositive staining in the cytoplasma, dendrites, axon terminals and nucleus. In the mouse pilocarpine model of status epilepticus and subsequent temporal lobe epilepsy, spastin expression disappeared in hilar neurons as early as at 2h during pilocarpine induced status epilepticus, and never recovered. At 7 days and 2 months after pilocarpine induced status epilepticus, spastin expression was down-regulated in granule cells in the dentate gyrus, but induced expression was found in reactive astrocytes. The demonstration of widespread distribution of spastin in functionally different brain regions in the present study may provide neuroanatomical basis to explain why different neurological, psychological disorders and cognitive impairment occur in patients with spastin mutation. Down-regulation or loss of spastin expression in hilar neurons may be related to their degeneration and may therefore initiate epileptogenetic events, leading to temporal lobe epilepsy.
Resumo:
Human subjects overestimate the change of rising intensity sounds compared with falling intensity sounds. Rising sound intensity has therefore been proposed to be an intrinsic warning cue. In order to test this hypothesis, we presented rising, falling, and constant intensity sounds to healthy humans and gathered psychophysiological and behavioral responses. Brain activity was measured using event-related functional magnetic resonance imaging. We found that rising compared with falling sound intensity facilitates autonomic orienting reflex and phasic alertness to auditory targets. Rising intensity sounds produced neural activity in the amygdala, which was accompanied by activity in intraparietal sulcus, superior temporal sulcus, and temporal plane. Our results indicate that rising sound intensity is an elementary warning cue eliciting adaptive responses by recruiting attentional and physiological resources. Regions involved in cross-modal integration were activated by rising sound intensity, while the right-hemisphere phasic alertness network could not be supported by this study.
Resumo:
In spite of improved antimicrobial therapy, bacterial meningitis still results in brain damage leading to significant long-term neurological sequelae in a substantial number of survivors, as confirmed by several recent studies. Meningitis caused by Streptococcus pneumoniae is associated with a particularly severe outcome. Experimental studies over the past few years have increased our understanding of the molecular mechanisms underlying the events that ultimately lead to brain damage during meningitis. Necrotic damage to the cerebral cortex is at least partly mediated by ischemia and oxygen radicals and therefore offers a promising target for adjunctive therapeutic intervention. Neuronal apoptosis in the hippocampus may represent the major pathological process responsible for cognitive impairment and learning disabilities in survivors. However, the mechanisms involved in causing this damage remain largely unknown. Anti-inflammatory treatment with corticosteroids aggravates hippocampal damage, thus underlining the potential shortcomings of current adjuvant strategies. In contrast, the combined inhibition of matrix metalloproteinase and tumour necrosis factor-alpha converting enzyme protected both the cortex and hippocampus in experimental meningitis, and may represent a promising new approach to adjunctive therapy. It is the hope that a more refined molecular understanding of the pathogenesis of brain damage during bacterial meningitis will lead to new adjunctive therapies.
Resumo:
Bacterial meningitis due to Streptococcus pneumoniae is associated with an significant mortality rate and persisting neurologic sequelae including sensory-motor deficits, seizures, and impairments of learning and memory. The histomorphological correlate of these sequelae is a pattern of brain damage characterized by necrotic tissue damage in the cerebral cortex and apoptosis of neurons in the hippocampal dentate gyrus. Different animal models of pneumococcal meningitis have been developed to study the pathogenesis of the disease. To date, the infant rat model is unique in mimicking both forms of brain damage documented in the human disease. In the present study, we established an infant mouse model of pneumococcal meningitis. Eleven-days-old C57BL/6 (n = 299), CD1 (n = 42) and BALB/c (n = 14) mice were infected by intracisternal injection of live Streptococcus pneumoniae. Sixteen hours after infection, all mice developed meningitis as documented by positive bacterial cultures of the cerebrospinal fluid. Sixty percent of infected C57BL/6 mice survived more than 40 h after infection (50% of CD1, 0% of BALB/c). Histological evaluations of brain sections revealed apoptosis in the dentate gyrus of the hippocampus in 27% of infected C57BL/6 and in 5% of infected CD1 mice. Apoptosis was confirmed by immunoassaying for active caspase-3 and by TUNEL staining. Other forms of brain damage were found exclusively in C57BL/6, i.e. caspase-3 independent (pyknotic) cell death in the dentate gyrus in 2% and cortical damage in 11% of infected mice. This model may prove useful for studies on the pathogenesis of brain injury in childhood bacterial meningitis.
Resumo:
Objectives: The goal of the present study was to elucidate the contribution of the newly recognized virulence factor choline to the pathogenesis of Streptococcus pneumoniae in an animal model of meningitis. Results: The choline containing strain D39Cho(-) and its isogenic choline-free derivative D39Cho(-)licA64 -each expressing the capsule polysaccharide 2 - were introduced intracisternally at an inoculum size of 10(3) CFU into 11 days old Wistar rats. During the first 8 h post infection both strains multiplied and stimulated a similar immune response that involved expression of high levels of proinflammatory cytokines, the matrix metalloproteinase 9 (MMP-9), IL-10, and the influx of white blood cells into the CSF. Virtually identical immune response was also elicited by intracisternal inoculation of 10(7) CFU equivalents of either choline-containing or choline-free cell walls. At sampling times past 8 h strain D39Cho(-) continued to replicate accompanied by an intense inflammatory response and strong granulocytic pleiocytosis. Animals infected with D39Cho(-) died within 20 h and histopathology revealed brain damage in the cerebral cortex and hippocampus. In contrast, the initial immune response generated by the choline-free strain D39Cho(-)licA64 began to decline after the first 8 h accompanied by elimination of the bacteria from the CSF in parallel with a strong WBC response peaking at 8 h after infection. All animals survived and there was no evidence for brain damage. Conclusion: Choline in the cell wall is essential for pneumococci to remain highly virulent and survive within the host and establish pneumococcal meningitis.
Resumo:
The apolipoprotein E (APOE) epsilon4 allele is the major genetic risk factor for Alzheimer's disease, but an APOE effect on memory performance and memory-related neurophysiology in young, healthy subjects is unknown. We found an association of APOE epsilon4 with better episodic memory compared with APOE epsilon2 and epsilon3 in 340 young, healthy persons. Neuroimaging was performed in a subset of 34 memory-matched individuals to study genetic effects on memory-related brain activity independently of differential performance. E4 carriers decreased brain activity over 3 learning runs, whereas epsilon2 and epsilon3 carriers increased activity. This smaller neural investment of epsilon4 carriers into learning reappeared during retrieval: epsilon4 carriers exhibited reduced retrieval-related activity with equal retrieval performance. APOE isoforms had no differential effects on cognitive measures other than memory, brain volumes, and brain activity related to working memory. We suggest that APOE epsilon4 is associated with good episodic memory and an economic use of memory-related neural resources in young, healthy humans.
Resumo:
OBJECTIVE: The objective of our study was to establish a standardized procedure for postmortem whole-body CT-based angiography with lipophilic and hydrophilic contrast media solutions and to compare the results of these two methods. MATERIALS AND METHODS: Minimally invasive postmortem CT angiography was performed on 10 human cadavers via access to the femoral blood vessels. Separate perfusion of the arterial and venous systems was established with a modified heart-lung machine using a mixture of an oily contrast medium and paraffin (five cases) and a mixture of a water-soluble contrast medium with polyethylene glycol (PEG) 200 in the other five cases. Imaging was executed with an MDCT scanner. RESULTS: The minimally invasive femoral approach to the vascular system provided a good depiction of lesions of the complete vascular system down to the level of the small supplying vessels. Because of the enhancement of well-vascularized tissues, angiography with the PEG-mixed contrast medium allowed the detection of tissue lesions and the depiction of vascular abnormalities such as pulmonary embolisms or ruptures of the vessel wall. CONCLUSION: The angiographic method with a water-soluble contrast medium and PEG as a contrast-agent dissolver showed a clearly superior quality due to the lack of extravasation through the gastrointestinal vascular bed and the enhancement of soft tissues (cerebral cortex, myocardium, and parenchymal abdominal organs). The diagnostic possibilities of these findings in cases of antemortem ischemia of these tissues are not yet fully understood.