2 resultados para CELL DEHYDRATION

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural modifications upon heating of pentagonite, Ca(VO)(Si4O10)·4H2O (space group Ccm21, a=10.3708(2), b=14.0643(2), c=8.97810(10) Å, V=1309.53(3) Å3) were investigated by in situ temperature dependent single-crystal X-ray structure refinements. Diffraction data of a sample from Poona district (India) have been measured in steps of 25 up to 250 °C and in steps of 50 °C between 250 and 400 °C. Pentagonite has a porous framework structure made up by layers of silicate tetrahedra connected by V4+O5 square pyramids. Ca and H2O molecules are extraframework occupants. Room temperature diffraction data allowed refinement of H positions. The hydrogen-bond system links the extraframework occupants to the silicate layers and also interconnects the H2O molecules located inside the channels. Ca is seven-fold coordinated forming four bonds to O of the tetrahedral framework and three bonds to extraframework H2O. The H2O molecule at O9 showing a high displacement parameter is not bonded to Ca. The dehydration in pentagonite proceeds in three steps. At 100 °C the H2O molecule at O8 was released while O9 moved towards Ca. As a consequence the displacement parameter of H2O at O9 halved compared to that at room temperature. The unit-cell volume decreased to 1287.33(3) Å3 leading to a formula with 3H2O per formula unit (pfu). Ca remained seven-fold coordinated. At 175 °C Ca(VO)(Si4O10)·3H2O transformed into a new phase with 1H2O molecule pfu characterized by doubling of the c axis and the monoclinic space group Pn. Severe bending of specific TOT angles led to contraction of the porous three-dimensional framework. In addition, H2O at O9 was expelled while H2O at O7 approached a position in the center of the channel. The normalized volume decreased to 1069.44(9) Å3. The Ca coordination reduced from seven- to six-fold. At 225 °C a new anhydrous phase with space group Pna21 but without doubling of c had formed. Release of H2O at O7 caused additional contraction of TOT angles and volume reduction (V=1036.31(9) Å3). Ca adopted five-fold coordination. During heating excursion up to 400 °C this anhydrous phase remained preserved. Between room temperature and 225 °C the unit-cell volume decreased by 21% due to dehydration. The dehydration steps compare well with the thermo-gravimetric data reported in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rare mixed copper-zinc phosphate mineral veszelyite (Cu,Zn)2Zn(PO4)(OH)3·2H2O space group P21/c, a = 7.5096(2), b = 10.2281(2), c = 9.8258(2) Å, β = 103.3040(10)°, V = 734.45(3) Å3 was investigated by in situ temperature-dependent single-crystal X-ray structure refinements. The atomic arrangement of veszelyite consists of an alternation of octahedral and tetrahedral sheets. The Jahn-Teller distorted CuO6 octahedra form sheets with eight-membered rings. The tetrahedral sheet composed of PO4 and ZnO3(OH) tetrahedra shows strong topological similarities to that of cavansite, gismondine, and kipushite.Diffraction data of a sample from Zdravo Vrelo, near Kreševo (Bosnia and Herzegovina) have been measured in steps of 25 up to 225 °C. Hydrogen positions and the hydrogen-bond system were determined experimentally from the structure refinements of data collected up to 125 °C. At 200 °C, the hydrogen-bonding scheme was inferred from bond-valence calculations and donor-acceptor distances. The hydrogen-bond system connects the tetrahedral sheet to the octahedral sheet and also braces the Cu sheet.At 150 °C, the H2O molecule at H2O2 was released and the Cu coordination (Cu1 and Cu2) decreased from originally six- to fivefold. Cu1 has a square planar coordination by four OH groups and an elongate distance to O3, whereas Cu2 has the Jahn-Teller characteristic elongate bond to H2O1. The unit-cell volume decreased 7% from originally 734.45(3) to 686.4(4) Å3 leading to a formula with 1 H2O pfu. The new phase observed above 150 °C is characterized by an increase of the c axis and a shortening of the b axis. The bending of T-O-T angles causes an increasing elliptical shape of the eight-membered rings in the tetrahedral and octahedral sheets. Moreover a rearrangement of the hydrogen-bond system was observed.At 225 °C, the structure degrades to an X-ray amorphous residual due to release of the last H2O molecule at H2O1. The stronger Jahn-Teller distortion of Cu1 relative to Cu2 suggests that Cu1 is fully occupied by Cu, whereas Cu2 bears significant Zn. H2O1 is the fifth ligand of Cu2. Zn at Cu2 is not favorable to adopt planar fourfold coordination. Thus, if the last water molecule is expelled the structure is destabilized.This study contributes to understanding the dehydration mechanism and thermal stability of supergene minerals characterized by Jahn-Teller distorted octahedra with mixed Cu, Zn occupancy.