5 resultados para CELL CONSTITUENTS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plasma membrane constitutes a barrier that maintains the essential differences between the cytosol and the extracellular environment. Plasmalemmal injury is a common event during the life of many cells that often leads to their premature, necrotic death. Blebbing - a display of plasmalemmal protrusions - is a characteristic feature of injured cells. In this study, we disclose a previously unknown role for blebbing in furnishing resistance to plasmalemmal injury. Blebs serve as precursors for injury-induced intracellular compartments that trap damaged segments of the plasma membrane. Hence, loss of cytosol and the detrimental influx of extracellular constituents are confined to blebs that are sealed off from the cell body by plugs of annexin A1 - a Ca(2+)- and membrane-binding protein. Our findings shed light on a fundamental process that contributes to the survival of injured cells. By targeting annexin A1/blebbing, new therapeutic approaches could be developed to avert the necrotic loss of cells in a variety of human pathologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of somatic cell count (SCC) and milk fraction on milk composition, distribution of cell populations, and mRNA expression of various inflammatory parameters was studied. Therefore, quarter milk samples were defined as cisternal (C), first 400 g of alveolar (A1), and remaining alveolar milk (A2) during the course of milking. Quarters were assigned to 4 groups according to their total SCC: 1) <12 x 10(3)/mL, 2) 12 to 100 x 10(3)/mL, 3) 100 to 350 x 10(3)/mL, and 4) >350 x 10(3)/mL. Milk constituents of interest were SCC, fat, protein, lactose sodium, and chloride ions as well as electrical conductivity. Cell populations were classified into lymphocytes, macrophages, and neutrophils (PMN). The mRNA expression of the inflammatory factors tumor necrosis factor-alpha, interleukin-1beta, cyclooxygenase-2, lactoferrin, and lysozyme was measured via real-time, quantitative reverse transcription PCR. Somatic cell count decreased from highest levels in C to lowest levels in A1 and increased thereafter to A2 in all groups. Fat content increased from C to A2 and with increasing SCC level. Lactose decreased with increasing SCC level but remained unchanged during milking. Concentrations of sodium and chloride, and electrical conductivity increased with increasing SCC but were higher in C than in A1 and A2. Protein was not affected by milk fraction or SCC level. The distribution of leukocytes was dramatically influenced by milk fraction and SCC. Lymphocytes were the dominating cell population in group 1, but the proportion of lymphocytes was low in groups 2, 3, and 4. Macrophage proportion was highest in group 2 and decreased in groups 3 and 4, whereas that of PMN increased from group 2 to 4. The content of macrophages decreased during milking in all SCC groups whereas that of PMN increased. The proportion of lymphocytes was not affected by milk fraction. The mRNA expression of all inflammatory factors showed an increase with increasing SCC but minor changes occurred during milking. In conclusion, milk fraction and SCC level have a crucial influence on the distribution of leukocyte populations and several milk constituents. The surprisingly high content of lymphocytes and concomitantly low mRNA expression of inflammatory factors in quarters with SCC <12 x 10(3)/mL indicates a different and possibly reduced readiness of the immune system to respond to invading pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are the two major constituents of eukaryotic cell membranes. In the protist Trypanosoma brucei, PE and PC are synthesized exclusively via the Kennedy pathway. To determine which organelles or processes are most sensitive to a disruption of normal phospholipid levels, the cellular consequences of a decrease in the levels of PE or PC, respectively, were studied following RNAi knock-down of four enzymes of the Kennedy pathway. RNAi against ethanolamine-phosphate cytidylyltransferase (ET) disrupted mitochondrial morphology and ultrastructure. Electron microscopy revealed alterations of inner mitochondrial membrane morphology, defined by a loss of disk-like cristae. Despite the structural changes in the mitochondrion, the cells maintained oxidative phosphorylation. Our results indicate that the inner membrane morphology of T. brucei procyclic forms is highly sensitive to a decrease of PE levels, as a change in the ultrastructure of the mitochondrion is the earliest phenotype observed after RNAi knock-down of ET. Interference with phospholipid synthesis also impaired normal cell-cycle progression. ET RNAi led to an accumulation of multinucleate cells. In contrast, RNAi against choline-/ethanolamine phosphotransferase, which affected PC as well as PE levels, caused a cell division phenotype characterized by non-division of the nucleus and production of zoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The provision of quality colostrum with a high concentration of immunoglobulins is critical for newborn calf health. Because first colostrum may be low in overall concentration to effectively reduce the risk of newborn infections, we tested equivalent milking fractions of colostrum for possible IgG differences. The objective of this study was to determine if the fractional composition of colostrum changes during the course of milking with a focus on immunoglobulins. Twenty-four Holstein and Simmental cows were milked (first colostrum) within 4h after calving. The colostrum of 1 gland per animal was assembled into 4 percentage fractions over the course of milking: 0 to 25%, 25 to 50%, 50 to 75%, and 75 to 100%. The IgG concentration among the various fractions did not change in any significant pattern. Concentration of protein, casein, lactose and somatic cell count remained the same or exhibited only minor changes during the course of fractional milking colostrum. We determined that no benefit exists in feeding any particular fraction of colostrum to the newborn.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the majority of cells, the integrity of the plasmalemma is recurrently compromised by mechanical or chemical stress. Serum complement or bacterial pore-forming toxins can perforate the plasma membrane provoking uncontrolled Ca(2+) influx, loss of cytoplasmic constituents and cell lysis. Plasmalemmal blebbing has previously been shown to protect cells against bacterial pore-forming toxins. The activation of the P2X7 receptor (P2X7R), an ATP-gated trimeric membrane cation channel, triggers Ca(2+) influx and induces blebbing. We have investigated the role of the P2X7R as a regulator of plasmalemmal protection after toxin-induced membrane perforation caused by bacterial streptolysin O (SLO). Our results show that the expression and activation of the P2X7R furnishes cells with an increased chance of surviving attacks by SLO. This protective effect can be demonstrated not only in human embryonic kidney 293 (HEK) cells transfected with the P2X7R, but also in human mast cells (HMC-1), which express the receptor endogenously. In addition, this effect is abolished by treatment with blebbistatin or A-438079, a selective P2X7R antagonist. Thus blebbing, which is elicited by the ATP-mediated, paracrine activation of the P2X7R, is part of a cellular non-immune defense mechanism. It pre-empts plasmalemmal damage and promotes cellular survival. This mechanism is of considerable importance for cells of the immune system which carry the P2X7R and which are specifically exposed to toxin attacks.