40 resultados para CATALYZED COPOLYMERIZATION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Numerous bacterial pathogens subvert cellular functions of eukaryotic host cells by the injection of effector proteins via dedicated secretion systems. The type IV secretion system (T4SS) effector protein BepA from Bartonella henselae is composed of an N-terminal Fic domain and a C-terminal Bartonella intracellular delivery domain, the latter being responsible for T4SS-mediated translocation into host cells. A proteolysis resistant fragment (residues 10-302) that includes the Fic domain shows autoadenylylation activity and adenylyl transfer onto Hela cell extract proteins as demonstrated by autoradiography on incubation with α-[(32)P]-ATP. Its crystal structure, determined to 2.9-Å resolution by the SeMet-SAD method, exhibits the canonical Fic fold including the HPFxxGNGRxxR signature motif with several elaborations in loop regions and an additional β-rich domain at the C-terminus. On crystal soaking with ATP/Mg(2+), additional electron density indicated the presence of a PP(i) /Mg(2+) moiety, the side product of the adenylylation reaction, in the anion binding nest of the signature motif. On the basis of this information and that of the recent structure of IbpA(Fic2) in complex with the eukaryotic target protein Cdc42, we present a detailed model for the ternary complex of Fic with the two substrates, ATP/Mg(2+) and target tyrosine. The model is consistent with an in-line nucleophilic attack of the deprotonated side-chain hydroxyl group onto the α-phosphorus of the nucleotide to accomplish AMP transfer. Furthermore, a general, sequence-independent mechanism of target positioning through antiparallel β-strand interactions between enzyme and target is suggested.
Resumo:
The highly cytotoxic diruthenium complex [(p-MeC(6)H(4)Pr(1))(2)Ru(2)(SC(6)H(4)-p-Me)(3)](+) (1), water-soluble as the chloride salt, is shown to efficiently catalyze oxidation of the thiols cysteine and glutathione to give the corresponding disulfides, which may explain its high in vitro anticancer activity.
Resumo:
Execution of an enzymatic reaction performed in a capillary with subsequent electrophoretic analysis of the formed products is referred to as electrophoretically mediated microanalysis (EMMA). An EMMA method was developed to investigate the stereoselectivity of the CYP3A4-mediated N-demethylation of ketamine. Ketamine was incubated in a 50 μm id bare fused-silica capillary together with human CYP3A4 Supersomes using a 100 mM phosphate buffer (pH 7.4) at 37°C. A plug containing racemic ketamine and the NADPH regenerating system including all required cofactors for the enzymatic reaction was injected, followed by a plug of the metabolizing enzyme CYP3A4 (500 nM). These two plugs were bracketed by plugs of incubation buffer to ensure proper conditions for the enzymatic reaction. The rest of the capillary was filled with a pH 2.5 running buffer comprising 50 mM Tris, phosphoric acid, and 2% w/v of highly sulfated γ-cyclodextrin. Mixing of reaction plugs was enhanced via application of -10 kV for 10 s. After an incubation of 8 min at 37°C without power application (zero-potential amplification), the capillary was cooled to 25°C within 3 min followed by application of -10 kV for the separation and detection of the formed enantiomers of norketamine. Norketamine formation rates were fitted to the Michaelis-Menten model and the elucidated values for V(max) and K(m) were found to be comparable to those obtained from the off-line assay of a previous study.
Resumo:
Cytochrome P450 oxidoreductase (POR) supplies electrons from NADPH to steroid and drug metabolizing reactions catalyzed by the cytochrome P450s located in endoplasmic reticulum. Mutations in human POR cause a wide spectrum of disease ranging from disordered steroidogenesis to sexual differentiation. Previously we and others have shown that POR mutations can lead to reduced activities of steroidogenic P450s CYP17A1, CYP19A1 and CYP21A1. Here we are reporting that mutations in the FMN binding domain of POR may reduce CYP3A4 activity, potentially influencing drug and steroid metabolism; and the loss of CYP3A4 activity may be correlated to the reduction of cytochrome b(5) by POR. Computational molecular docking experiments with a FMN free structural model of POR revealed that an external FMN could be docked in close proximity to the FAD moiety and receive electrons donated by NADPH. Using FMN supplemented assays we have demonstrated restoration of the defective POR activity in vitro.
Resumo:
We present the novel synthesis of two sugar units that are central intermediates for the formation of members of the bicyclo-DNA and -RNA family. The synthesis starts from commercially available 1,2: 5,6-di-O-isopropylidene-alpha-D-glucofuranose. The key step involves the elaboration of a carbocyclic ring in a furanoside by rhodium(I)-catalyzed hydroacylation. Via this pathway, one of the sugar units is available in 8 steps and in an overall yield of 27%, while its deoxy derivative is obtained in 11 steps, which is 5 steps fewer than in our previous synthesis of this compound.
Resumo:
A universal and robust analytical method for the determination of Δ9-tetrahydrocannabinol (THC) and two of its metabolites Δ9-(11-OH)-tetrahydrocannabinol (11-OH-THC) and 11-nor-Δ9-carboxy-tetrahydrocannabinol (THC-COOH) in human whole blood was developed and validated for use in forensic toxicology. Protein precipitation, integrated solid phase extraction and on-line enrichment followed by high-performance liquid chromatography separation and detection with a triple quadrupole mass spectrometer were combined. The linear ranges used for the three cannabinoids were from 0.5 to 20 ng/mL for THC and 11-OH-THC and from 2.5 to 100 ng/mL for THC-COOH, therefore covering the requirements for forensic use. Correlation coefficients of 0.9980 or better were achieved for all three analytes. No relevant hydrolysis was observed for THC-COOH glucuronide with this procedure--in contrast to our previous GC-MS procedure, which obviously lead to an artificial increase of the THC-COOH concentration due to the hydrolysis of the glucuronide-conjugate occurring at high pH during the phase-transfer catalyzed methylation step.
Resumo:
Enantioselective CE with sulfated cyclodextrins as chiral selectors was used to determine the CYP3A4-catalyzed N-demethylation kinetics of ketamine to norketamine and its inhibition in the presence of ketoconazole in vitro. Ketamine, a chiral phencyclidine derivative, was incubated with recombinant human CYP3A4 from a baculovirus expression system as racemic mixture and as single enantiomer. Alkaline liquid/liquid extracts of the samples were analyzed with a pH 2.5 buffer comprising 50 mM Tris and phosphoric acid together with either multiple isomer sulfated β-cyclodextrin (10 mg/mL) or highly sulfated γ-cyclodextrin (2%, w/v). Data obtained in the absence of ketoconazole revealed that the N-demethylation occurred stereoselectively with Michaelis-Menten (incubation of racemic ketamine) and Hill (separate incubation of single enantiomers) kinetics. Data generated in the presence of ketoconazole as the inhibitor could best be fitted to a one-site competitive model and inhibition constants were calculated using the equation of Cheng and Prusoff. No stereoselective difference was observed, but inhibition constants for the incubation of racemic ketamine were found to be larger compared with those obtained with the incubation of single ketamine enantiomers.
Resumo:
Cardiolipin is important for bacterial and mitochondrial stability and function. The final step in cardiolipin biosynthesis is catalyzed by cardiolipin synthase and differs mechanistically between prokaryotes and eukaryotes. To study the importance of cardiolipin synthesis for mitochondrial integrity, membrane protein complex formation, and cell proliferation in the human and animal pathogenic protozoan parasite, Trypanosoma brucei, we generated conditional cardiolipin synthase-knockout parasites. We found that cardiolipin formation in T. brucei procyclic forms is catalyzed by a bacterial-type cardiolipin synthase, providing experimental evidence for a prokaryotic-type cardiolipin synthase in a eukaryotic organism. Ablation of enzyme expression resulted in inhibition of de novo cardiolipin synthesis, reduction in cellular cardiolipin levels, alterations in mitochondrial morphology and function, and parasite death in culture. By using immunofluorescence microscopy and blue-native gel electrophoresis, cardiolipin synthase was shown to colocalize with inner mitochondrial membrane proteins and to be part of a large protein complex. During depletion of cardiolipin synthase, the levels of cytochrome oxidase subunit IV and cytochrome c1, reflecting mitochondrial respiratory complexes IV and III, respectively, decreased progressively.
Resumo:
Cytochrome P450 oxidoreductase (POR) is an enzyme that is essential for multiple metabolic processes, chiefly among them are reactions catalyzed by cytochrome P450 proteins for metabolism of steroid hormones, drugs and xenobiotics. Mutations in POR cause a complex set of disorders that often resemble defects in steroid metabolizing enzymes 17α-hydroxylase, 21-hydroxylase and aromatase. Since our initial reports of POR mutations in 2004, more than 200 different mutations and polymorphisms in POR gene have been identified. Several missense variations in POR have been tested for their effect on activities of multiple steroid and drug metabolizing P450 proteins. Mutations in POR may have variable effects on different P450 partner proteins depending on the location of the mutation. The POR mutations that disrupt the binding of co-factors have negative impact on all partner proteins, while mutations causing subtle structural changes may lead to altered interaction with specific partner proteins and the overall effect may be different for each partner. This review summarizes the recent discoveries related to mutations and polymorphisms in POR and discusses these mutations in the context of historical developments in the discovery and characterization of POR as an electron transfer protein. The review is focused on the structural, enzymatic and clinical implications of the mutations linked to newly identified disorders in humans, now categorized as POR deficiency.