2 resultados para CARACOL BOLA

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

SETTING: Kinshasa Province, Democratic Republic of Congo. OBJECTIVE: To identify and validate register-based indicators of acid-fast bacilli (AFB) microscopy quality. DESIGN: Selection of laboratories based on reliability and variation in routine smear rechecking results. Calculation of relative sensitivity (RS) compared to recheckers and its correlation coefficient (R) with candidate indicators based on a fully probabilistic analysis incorporating vague prior information using WinBUGS. RESULTS: The proportion of positive follow-up smears correlated well (median R 0.81, 95% credibility interval [CI] 0.58-0.93), and the proportion of first smear-positive cases fairly (median R 0.70, 95% CI 0.38-0.89) with RS. The proportions of both positive suspect and low positive case smears showed poor correlations (median R 0.27 and -0.22, respectively, with ranges including zero). CONCLUSIONS: The proportion of positives in follow-up smears is the most promising indicator of AFB smear sensitivity, while the proportion of positive suspects may be more indicative of accessibility and suspect selection. Both can be obtained from simple reports, and should be used for internal and external monitoring and as guidance for supervision. As proportion of low positive suspect smears and consistency within case series are more difficult to interpret, they should be used only on-site by laboratory professionals. All indicators require more research to define their optimal range in various settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Venom glands are alreadypresent in theoldes t spider group, the Mesothelae. Theglands lie in the anterior portion of the cheliceral basal segment but are very small, and it is doubtful how much the venom contributes to the predatory success. In mygalomorph spiders, the well-developed venom glands are still in the basal segment of the chelicerae and produce powerful venom that is injected via the cheliceral fangs into a victim. In all other spiders (Araneomorphae), the venom glands have become much larger and reach into the prosoma where they can take up a considerable proportion of this body part. Only a few spiders have reduced their venom glands, either partially or completely (Uloboridae, Holarchaeidae and Symphytognathidae are usually mentioned) or modified them significantly (Scytodidae, see Suter and Stratton 2013). As well as using venom, spiders may also use their chelicerae to overwhelm an item of prey. It is primarily a question of size whether a spider chews up small arthropods without applying venom or if it injects venom first. Very small and/or defenceless arthropods are picked up and crashed with the chelicerae, while larger, dangerous or well-defended items are carefully approached and only attacked with venom injection. Some spiders specialize on prey groups, such as noctuid moths (several genera of bola spiders among Araneidae), web spiders (Mimetidae), ants (Zodarion species in Zodariidae, aphantochiline thomisids, several genera among Theridiidae, Salticidae, Clubionidae and Gnaphosidae) or termites (Ammoxenidae). However, these more or less monophagous species amount only to roughly 2 % of all known spider species, while 98 % are polyphagous. From these considerations, it follows that the majority of spider venoms are not tailored to any given invertebrate or insect group but are rather unspecialized to be effective over a broad spectrum of prey types that spiders naturally encounter.