2 resultados para CALPAIN-1
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Marfan syndrome (MFS) is a heritable disorder of connective tissue, affecting principally skeletal, ocular, and cardiovascular systems. The most life-threatening manifestations are aortic aneurysm and dissection. We investigated changes in the proteome of aortic media in patients with and without MFS to gain insight into molecular mechanisms leading to aortic dilatation. METHODS AND RESULTS: Aortic samples were collected from 46 patients. Twenty-two patients suffered from MFS, 9 patients had bicuspid aortic valve, and 15 patients without connective tissue disorder served as controls. Aortic media was isolated and its proteome was analyzed in 12 patients with the use of 2-dimensional difference gel electrophoresis and mass spectrometry. We found higher amounts of filamin A C-terminal fragment, calponin 1, vinculin, microfibril-associated glycoprotein 4, and myosin-10 heavy chain in aortic media of MFS aneurysm samples than in controls. Regulation of filamin A C-terminal fragmentation was validated in all patient samples by immunoblotting. Cleavage of filamin A and the calpain substrate spectrin was increased in the MFS and bicuspid aortic valve groups. Extent of cleavage correlated positively with calpain 2 expression and negatively with the expression of its endogenous inhibitor calpastatin. CONCLUSIONS: Our observation demonstrates for the first time upregulation of the C-terminal fragment of filamin A in dilated aortic media of MFS and bicuspid aortic valve patients. In addition, our results present evidence that the cleavage of filamin A is highly likely the result of the protease calpain. Increased calpain activity might explain, at least in part, histological alterations in dilated aorta.
Resumo:
Clostridium perfringens β-toxin (CPB) is a β-barrel pore-forming toxin and an essential virulence factor of C. perfringens type C strains, which cause fatal hemorrhagic enteritis in animals and humans. We have previously shown that CPB is bound to endothelial cells within the intestine of affected pigs and humans, and that CPB is highly toxic to primary porcine endothelial cells (pEC) in vitro. The objective of the present study was to investigate the type of cell death induced by CPB in these cells, and to study potential host cell mechanisms involved in this process. CPB rapidly induced lactate dehydrogenase (LDH) release, propidium iodide uptake, ATP depletion, potassium efflux, a marked rise in intracellular calcium [Ca(2+)]i, release of high-mobility group protein B1 (HMGB1), and caused ultrastructural changes characteristic of necrotic cell death. Despite a certain level of caspase-3 activation, no appreciable DNA fragmentation was detected. CPB-induced LDH release and propidium iodide uptake were inhibited by necrostatin-1 and the two dissimilar calpain inhibitors PD150606 and calpeptin. Likewise, inhibition of potassium efflux, chelation of intracellular calcium and treatment of pEC with cyclosporin A also significantly inhibited CPB-induced LDH release. Our results demonstrate that rCPB primarily induces necrotic cell death in pEC, and that necrotic cell death is not merely a passive event caused by toxin-induced membrane disruption, but is propagated by host cell-dependent biochemical pathways activated by the rise in intracellular calcium and inhibitable by necrostatin-1, consistent with the emerging concept of programmed necrosis ("necroptosis").