18 resultados para C. Electrical properties

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

HeLa cells expressing wild-type connexin43, connexin40 or connexin45 and connexins fused with a V5/6-His tag to the carboxyl terminus (CT) domain (Cx43-tag, Cx40-tag, Cx45-tag) were used to study connexin expression and the electrical properties of gap junction channels. Immunoblots and immunolabeling indicated that tagged connexins are synthesized and targeted to gap junctions in a similar manner to their wild-type counterparts. Voltage-clamp experiments on cell pairs revealed that tagged connexins form functional channels. Comparison of multichannel and single-channel conductances indicates that tagging reduces the number of operational channels, implying interference with hemichannel trafficking, docking and/or channel opening. Tagging provoked connexin-specific effects on multichannel and single-channel properties. The Cx43-tag was most affected and the Cx45-tag, least. The modifications included (1) V j-sensitive gating of I j (V j, gap junction voltage; I j, gap junction current), (2) contribution and (3) kinetics of I j deactivation and (4) single-channel conductance. The first three reflect alterations of fast V j gating. Hence, they may be caused by structural and/or electrical changes on the CT that interact with domains of the amino terminus and cytoplasmic loop. The fourth reflects alterations of the ion-conducting pathway. Conceivably, mutations at sites remote from the channel pore, e.g., 6-His-tagged CT, affect protein conformation and thus modify channel properties indirectly. Hence, V5/6-His tagging of connexins is a useful tool for expression studies in vivo. However, it should not be ignored that it introduces connexin-dependent changes in both expression level and electrophysiological properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two RNA phosphoramidites containing the bases 1,N(6)-ethenoadenine (εA) and 3,N(4)-ethenocytosine (εC) were synthesized. These building blocks were incorporated into two 12-mer oligoribonucleotides for evaluation of the base pairing properties of these base lesions by UV melting curve (Tm) and circular dichroism measurements. The Tm data of the resulting duplexes with the etheno modifications opposing all natural bases showed a substantial destabilization compared to the corresponding natural duplexes, confirming their inability to form base pairs. The coding properties of these lesions were further investigated by introducing them into 31-mer oligonucleotides and assessing their ability to serve as templates in primer extension reactions with HIV, AMV, and MMLV reverse transcriptases (RT). Primer extension reactions showed complete arrest of the incorporation process using MMLV RT and AMV RT, while HIV RT preferentially incorporates dAMP opposite εA and dAMP as well as dTMP opposite εC. The properties of these RNA lesions are discussed in the context of its putative biological role.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Connexin45 (Cx45) hemichannels (HCs) open in the absence of Ca(2+) and close in its presence. To elucidate the underlying mechanisms, we examined the role of extra- and intracellular Ca(2+) on the electrical properties of HCs. Experiments were performed on HeLa cells expressing Cx45 using electrical (voltage clamp) and optical (Ca(2+) imaging) methods. HCs exhibit a time- and voltage-dependent current (I(hc)), activating with depolarization and inactivating with hyperpolarization. Elevation of [Ca(2+)](o) from 20 nM to 2 μM reversibly decreases I(hc), decelerates its rate of activation, and accelerates its deactivation. Our data suggest that [Ca(2+)](o) modifies the channel properties by adhering to anionic sites in the channel lumen and/or its outer vestibule. In this way, it blocks the channel pore and reversibly lowers I(hc) and modifies its kinetics. Rapid lowering of [Ca(2+)](o) from 2 mM to 20 nM, achieved early during a depolarizing pulse, led to an outward I(hc) that developed with virtually no delay and grew exponentially in time paralleled by unaffected [Ca(2+)](i). A step increase of [Ca(2+)](i) evoked by photorelease of Ca(2+) early during a depolarizing pulse led to a transient decrease of I(hc) superimposed on a growing outward I(hc); a step decrease of [Ca(2+)](i) elicited by photoactivation of a Ca(2+) scavenger provoked a transient increase in I(hc). Hence, it is tempting to assume that Ca(2+) exerts a direct effect on Cx45 hemichannels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human HeLa cells expressing mouse connexin30 were used to study the electrical properties of gap junction channel substates. Experiments were performed on cell pairs using a dual voltage-clamp method. Single-channel currents revealed discrete levels attributable to a main state, a residual state, and five substates interposed, suggesting the operation of six subgates provided by the six connexins of a gap junction hemichannel. Substate conductances, gamma(j,substate), were unevenly distributed between the main-state and the residual-state conductance (gamma(j,main state) = 141 pS, gamma(j,residual state) = 21 pS). Activation of the first subgate reduced the channel conductance by approximately 30%, and activation of subsequent subgates resulted in conductance decrements of 10-15% each. Current transitions between the states were fast (<2 ms). Substate events were usually demarcated by transitions from and back to the main state; transitions among substates were rare. Hence, subgates are recruited simultaneously rather than sequentially. The incidence of substate events was larger at larger gradients of V(j). Frequency and duration of substate events increased with increasing number of synchronously activated subgates. Our mathematical model, which describes the operation of gap junction channels, was expanded to include channel substates. Based on the established V(j)-sensitivity of gamma(j,main state) and gamma(j,residual state), the simulation yielded unique functions gamma(j,substate) = f(V(j)) for each substate. Hence, the spacing of subconductance levels between the channel main state and residual state were uneven and characteristic for each V(j).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies of subcellular Ca(2+) signaling rely on methods for labeling cells with fluorescent Ca(2+) indicator dyes. In this study, we demonstrate the use of single-cell electroporation for Ca(2+) indicator loading of individual neurons and small neuronal networks in rat neocortex in vitro and in vivo. Brief voltage pulses were delivered through glass pipettes positioned close to target cells. This approach resulted in reliable and rapid (within seconds) loading of somata and subsequent complete labeling of dendritic and axonal arborizations. By using simultaneous whole-cell recordings in brain slices, we directly addressed the effect of electroporation on neurons. Cell viability was high (about 85%) with recovery from the membrane permeabilization occurring within a minute. Electrical properties of recovered cells were indistinguishable before and after electroporation. In addition, Ca(2+) transients with normal appearance could be evoked in dendrites, spines, and axonal boutons of electroporated cells. Using negative-stains of somata, targeted single-cell electroporation was equally applicable in vivo. We conclude that electroporation is a simple approach that permits Ca(2+) indicator loading of multiple cells with low background staining within a short amount of time, which makes it especially well suited for functional imaging of subcellular Ca(2+) dynamics in small neuronal networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One novel treatment strategy for the diseased heart focuses on the use of pluripotent stem cell-derived cardiomyocytes (SC-CMs) to overcome the heart's innate deficiency for self-repair. However, targeted application of SC-CMs requires in-depth characterization of their true cardiogenic potential in terms of excitability and intercellular coupling at cellular level and in multicellular preparations. In this study, we elucidated the electrical characteristics of single SC-CMs and intercellular coupling quality of cell pairs, and concomitantly compared them with well-characterized murine native neonatal and immortalized HL-1 cardiomyocytes. Firstly, we investigated the electrical properties and Ca2+ signaling mechanisms specific to cardiac contraction in single SC-CMs. Despite heterogeneity of the new cardiac cell population, their electrophysiological activity and Ca2+ handling were similar to native cells. Secondly, we investigated the capability of paired SC-CMs to form an adequate subunit of a functional syncytium and analyzed gap junctions and signal transmission by dye transfer in cell pairs. We discovered significantly diminished coupling in SC-CMs compared with native cells, which could not be enhanced by a coculture approach combining SC-CMs and primary CMs. Moreover, quantitative and structural analysis of gap junctions presented significantly reduced connexin expression levels compared with native CMs. Strong dependence of intercellular coupling on gap junction density was further confirmed by computational simulations. These novel findings demonstrate that despite the cardiogenic electrophysiological profile, SC-CMs present significant limitations in intercellular communication. Inadequate coupling may severely impair functional integration and signal transmission, which needs to be carefully considered for the prospective use of SC-CMs in cardiac repair.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of MWCNT introduction in a polycarbosilane based ceramic on its electrical properties is presented. The electrical conductivity of two MWCNT powders was measured under dynamic compaction up to 20 MPa when it reached 3–5 S/cm. The compaction behavior was also analyzed and modeled. A composite was then realized using allylhydridopolycarbosilane SMP10® and divinylbenzene as matrix. Intact 10 mm MWCNT-SiC ceramic discs samples with 2 wt.% filler load were produced pressure-less via liquid route despite the linear shrinkage of about 30%. Nanotubes microstructure and distribution in the matrix were confirmed after pyrolysis with TEM and SEM analysis. Anyhow similar electrical conductivity values after pyrolysis between the loaded and unloaded samples were measured. The microstructure analysis via XRD and TEM revealed that the percolative carbon network formed through the use of divinylbenzene improves the electric conductivity more than that of MWCNT addition and also simplifies the whole process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microneurography is a method suitable for recording intraneural single or multiunit action potentials in conscious subjects. Microneurography has rarely been applied to animal experiments, where more invasive methods, like the teased fiber recording technique, are widely used. We have tested the feasibility of microneurographic recordings from the peripheral nerves of rats. Tungsten microelectrodes were inserted into the sciatic nerve at mid-thigh level. Single or multiunit action potentials evoked by regular electrical stimulation were recorded, digitized and displayed as a raster plot of latencies. The method allows unambiguous recording and recognition of single C-fiber action potentials from an in vivo preparation, with minimal disruption of the nerve being recorded. Multiple C-fibers can be recorded simultaneously for several hours, and if the animal is allowed to recover, repeated recording sessions can be obtained from the same nerve at the same level over a period of weeks or months. Also, single C units can be functionally identified by their changes in latency to natural stimuli, and insensitive units can be recognized as 'silent' nociceptors or sympathetic efferents by their distinctive profiles of activity-dependent slowing during repetitive electrical stimulation, or by the effect on spontaneous efferent activity of a proximal anesthetic block. Moreover, information about the biophysical properties of C axons can be obtained from their latency recovery cycles. Finally, we show that this preparation is potentially suitable for the study of C-fiber behavior in models of neuropathies and nerve lesions, both under resting conditions and in response to drug administration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis of a novel bicyclo-thymidine nucleoside bearing an ester functionality at C(6') (bc(alpha-alk)-nucleosides) is reported. This nucleoside was incorporated into oligodeoxynucleotides via solid phase phosphoramidite chemistry, and the ester moiety was post-synthetically converted to an amide or a carboxy group, or was left unchanged. Thermal melting data (T-m) with complementary DNA and RNA were collected and compared to natural DNA and to bc- and bc(ox)-DNA. It was found that single incorporations of bc(alpha-alk)-nucleosides in DNA duplexes were destabilizing by 0.5 to 2.5 degrees C/mod, whereas two consecutive bc(alpha-alk)-residues were less destabilizing, and in some cases even stabilizing by 0.5 degrees C/mod. In duplexes with complementary RNA, isolated bc(alpha-alk)-residues destabilized the duplex by -1.0 to -4.0 degrees C/mod, depending on the chemical nature of the substituent, whereas two consecutive modifications were only destabilizing by 0.3-1.0 degrees C/mod. The pairing selectivity was similar to that of unmodified or bc-DNA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two novel bicyclo-T nucleosides carrying a hydroxyl or a carboxymethyl substituent in C(6')-[alpha]-position were prepared and incorporated into oligodeoxynucleotides. During oligonucleotide deprotection the carboxymethyl substituent was converted into different amide substituents in a parallel way. Tm-measurements showed no dramatic differences in both, thermal affinity and mismatch discrimination, compared to unmodified oligonucleotides. The post-synthetic modification of the carboxymethyl substituent allows in principle for a parallel preparation of a library of oligonucleotides carrying diverse substituents at C(6'). In addition, functional groups can be placed into unique positions in a DNA double helix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Spectra of K0S mesons and Λ hyperons were measured in p+C interactions at 31 GeV/c with the large acceptance NA61/SHINE spectrometer at the CERN SPS. The data were collected with an isotropic graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections, charged pion spectra, and charged kaon spectra were previously measured using the same data set. Results on K0S and Λ production in p+C interactions serve as reference for the understanding of the enhancement of strangeness production in nucleus-nucleus collisions. Moreover, they provide important input for the improvement of neutrino flux predictions for the T2K long baseline neutrino oscillation experiment in Japan. Inclusive production cross sections for K0S and Λ are presented as a function of laboratory momentum in intervals of the laboratory polar angle covering the range from 0 up to 240 mrad. The results are compared with predictions of several hadron production models. The K0S mean multiplicity in production processes and the inclusive cross section for K0S production were measured and amount to 0.127 ± 0.005 (stat) ± 0.022 (sys) and 29.0 ± 1.6 (stat) ± 5.0 (sys) mb, respectively.