6 resultados para César, Cayo Julio, 100-44 a. C.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES The study investigated the modification of composite-to-enamel bond strength by pre-treatment of enamel with a concentrated, acidic SnCl2-solution. METHODS Six groups of flat human enamel specimens (n=44 per group) were treated as follows: OB-H: H3PO4 etching, Optibond FL application (primer+adhesive; manufacturer's instructions); OB-S: SnCl2 pre-treatment, Optibond FL application (primer+adhesive); OB-HS: H3PO4 etching+SnCl2 pre-treatment, Optibond FL application (primer+adhesive); CF-N: Clearfil SE application (primer+bond; manufacturer's instructions); CF-H: H3PO4 etching, Clearfil SE application (primer+bond); CF-S: SnCl2 pre-treatment, Clearfil SE application (primer+bond). Enamel specimens were then built up with resin composite (Clearfil Majesty Esthetic) and stored (100% humidity, 37 °C, 1 week). μTBS-measurement and failure mode analysis of one-half of the specimens were performed immediately after storage, while the other half was analysed after a thermocycling procedure (8500 cycles; 5 °C and 55 °C; dwell time 30s). Additional specimens were prepared for SEM- and EDX-analysis. RESULTS Highest values were measured for OB-H before and after thermocycling, lowest values for CF-N. Compared to OB-H treatment, OB-S treatment reduced μTBS before/after thermocycling by 23%/28% and OB-HS treatment by 8%/24% (except for OB-SH before (n.s.), all p≤0.001 compared to OB-H). In the Clearfil SE treated groups pre-treatment increased μTBS significantly compared to CF-N (before/after: CF-H: +46%/+70%; CF-S: +51%/42%; all p≤0.001). CONCLUSION Pre-treatment with H3PO4 or SnCl2 markedly increased the μTBS of Clearfil SE to enamel. However, thermocycling partly reduced the gain in μTBS obtained by SnCl2 pre-treatment. CLINICAL SIGNIFICANCE The application of an acidic and highly concentrated SnCl2 solution is a good option to increase the μTBS between enamel and a resin composite mediated by an adhesive system containing the multifunctional monomer MDP.
Resumo:
RATIONALE AND OBJECTIVES: To evaluate the effect of automatic tube current modulation on radiation dose and image quality for low tube voltage computed tomography (CT) angiography. MATERIALS AND METHODS: An anthropomorphic phantom was scanned with a 64-section CT scanner using following tube voltages: 140 kVp (Protocol A), 120 kVp (Protocol B), 100 kVp (Protocol C), and 80 kVp (Protocol D). To achieve similar noise, combined z-axis and xy-axes automatic tube current modulation was applied. Effective dose (ED) for the four tube voltages was assessed. Three plastic vials filled with different concentrations of iodinated solution were placed on the phantom's abdomen to obtain attenuation measurements. The signal-to-noise ratio (SNR) was calculated and a figure of merit (FOM) for each iodinated solution was computed as SNR(2)/ED. RESULTS: The ED was kept similar for the four different tube voltages: (A) 5.4 mSv +/- 0.3, (B) 4.1 mSv +/- 0.6, (C) 3.9 mSv +/- 0.5, and (D) 4.2 mSv +/- 0.3 (P > .05). As the tube voltage decreased from 140 to 80 kVp, image noise was maintained (range, 13.8-14.9 HU) (P > .05). SNR increased as the tube voltage decreased, with an overall gain of 119% for the 80-kVp compared to the 140-kVp protocol (P < .05). The FOM results indicated that with a reduction of the tube voltage from 140 to 120, 100, and 80 kVp, at constant SNR, ED was reduced by a factor of 2.1, 3.3, and 5.1, respectively, (P < .001). CONCLUSIONS: As tube voltage decreases, automatic tube current modulation for CT angiography yields either a significant increase in image quality at constant radiation dose or a significant decrease in radiation dose at a constant image quality.
Resumo:
OBJECTIVE: To compare image quality and radiation dose of thoracoabdominal computed tomography (CT) angiography at 80 and 100 kVp and to assess the feasibility of reducing contrast medium volume from 60 to 45 mL at 80 kVp. MATERIALS AND METHODS: This retrospective study had institutional review board approval; informed consent was waived. Seventy-five patients who had undergone thoracoabdominal 64-section multidetector-row CT angiography were divided into 3 groups of 25 patients each. Patients of groups A (tube voltage, 100 kVp) and B (tube voltage, 80 kVp) received 60 mL of contrast medium at 4 mL/s. Patients of group C (tube voltage, 80 kVp) received 45 mL of contrast medium at 3 mL/s. Mean aortoiliac attenuation, image noise, and contrast-to-noise ratio were assessed. The measurement of radiation dose was based on the volume CT dose index. Three independent readers assessed the diagnostic image quality. RESULTS: Mean aortoiliac attenuation for group B (621.1 +/- 90.5 HU) was significantly greater than for groups A and C (485.2 +/- 110.5 HU and 483.1 +/- 119.8 HU; respectively) (P < 0.001). Mean image noise was significantly higher for groups B and C than for group A (P < 0.05). The contrast-to-noise ratio did not significantly differ between the groups (group A, 35.0 +/- 13.8; group B, 31.7 +/- 10.1; group C, 27.3 +/- 11.5; P = 0.08). Mean volume CT dose index in groups B and C (5.2 +/- 0.4 mGy and 4.9 +/- 0.3 mGy, respectively) were reduced by 23.5% and 27.9%, respectively, compared with group A (6.8 +/- 0.8 mGy) (P < 0.001). The average overall diagnostic image quality for the 3 groups was graded as good or better. The score for group A was significantly higher than that for group C (P < 0.01), no difference was seen between group A and B (P = 0.92). CONCLUSIONS: Reduction of tube voltage from 100 to 80 kVp for thoracoabdominal CT angiography significantly reduces radiation dose without compromising image quality. Reduction of contrast medium volume to 45 mL at 80 kVp resulted in lower but still diagnostically acceptable image quality.