37 resultados para Brush-tailed phascogale
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Comparative stability studies of poly(2-methyl-2-oxazoline) and poly(ethylene glycol) brush coatings
Resumo:
Non-fouling surfaces that resist non-specific adsorption of proteins, bacteria, and higher organisms are of particular interest in diverse applications ranging from marine coatings to diagnostic devices and biomedical implants. Poly(ethylene glycol) (PEG) is the most frequently used polymer to impart surfaces with such non-fouling properties. Nevertheless, limitations in PEG stability have stimulated research on alternative polymers that are potentially more stable than PEG. Among them, we previously investigated poly(2-methyl-2-oxazoline) (PMOXA), a peptidomimetic polymer, and found that PMOXA shows excellent anti-fouling properties. Here, we compare the stability of films self-assembled from graft copolymers exposing a dense brush layer of PEG and PMOXA side chains, respectively, in physiological and oxidative media. Before media exposure both film types prevented the adsorption of full serum proteins to below the detection limit of optical waveguide in situ measurements. Before and after media exposure for up to 2 weeks, the total film thickness, chemical composition, and total adsorbed mass of the films were quantified using variable angle spectroscopic ellipsometry (VASE), X-ray photoelectron spectroscopy (XPS), and optical waveguide lightmode spectroscopy (OWLS), respectively. We found (i) that PMOXA graft copolymer films were significantly more stable than PEG graft copolymer films and kept their protein-repellent properties under all investigated conditions and (ii) that film degradation was due to side chain degradation rather than due to copolymer desorption.
Resumo:
Renal reabsorption of inorganic phosphate (P(i)) is mainly mediated by the Na(+)-dependent P(i)-cotransporter NaPi-IIa that is expressed in the brush-border membrane (BBM) of renal proximal tubules. Regulation and apical expression of NaPi-IIa are known to depend on a network of interacting proteins. Most of the interacting partners identified so far associate with the COOH-terminal PDZ-binding motif (TRL) of NaPi-IIa. In this study GABA(A) receptor-associated protein (GABARAP) was identified as a novel interacting partner of NaPi-IIa applying a membrane yeast-two-hybrid system (MYTH 2.0) to screen a mouse kidney library with the TRL-truncated cotransporter as bait. GABARAP mRNA and protein are present in renal tubules, and the interaction of NaPi-IIa and GABARAP was confirmed by using glutathione S-transferase pulldowns from BBM and coimmunoprecipitations from transfected HEK293 cells. Amino acids 36-68 of GABARAP were identified as the determinant for the described interaction. The in vivo effects of this interaction were studied in a murine model. GABARAP(-/-) mice have reduced urinary excretion of P(i), higher Na(+)-dependent (32)P(i) uptake in BBM vesicles, and increased expression of NaPi-IIa in renal BBM compared with GABARAP(+/+) mice. The expression of Na(+)/H(+) exchanger regulatory factor (NHERF)1, an important scaffold for the apical expression of NaPi-IIa, is also increased in GABARAP(-/-) mice. The absence of GABARAP does not interfere with the regulation of the cotransporter by either parathyroid hormone or acute changes of dietary P(i) content.
Resumo:
We prove large deviation results for sums of heavy-tailed random elements in rather general convex cones being semigroups equipped with a rescaling operation by positive real numbers. In difference to previous results for the cone of convex sets, our technique does not use the embedding of cones in linear spaces. Examples include the cone of convex sets with the Minkowski addition, positive half-line with maximum operation and the family of square integrable functions with arithmetic addition and argument rescaling.
Resumo:
It was the aim of the study to evaluate the clinical and antibacterial effect of a dentifrice containing an anti-inflammatory plant extract (SB) versus a placebo (PLA) using an experimental gingivitis model. Forty subjects (20 per group) discontinued all oral hygiene measures for four teeth for a period of 21 days using a shield (to generate a possible gingivitis) while they could brush the other teeth normally. After brushing, the shield was removed and teeth were treated with the randomly assigned toothpaste slurry for 1 min. Löe and Silness gingival index (GI), Silness and Löe plaque index (PI), and biofilm vitality (VF%) were assessed at days 0, 14, and 21, respectively. Subjects of the PLA group developed a GI of 0.82?±?0.342 (day 14) and 1.585?±?0.218 (day 21), while the data of the SB group were significantly reduced (0.355?±?0.243 and 0.934?±?0.342, p?0.001). While PI was significantly reduced at all follow-up appointments, reductions in VF reached the level of significance only at day 21. The results suggest that the new toothpaste formulation was able to significantly reduce the extent of gingivitis, plaque development, and vital flora.
Resumo:
Knowledge about segmental flexibility in adolescent idiopathic scoliosis is crucial for a better biomechanical understanding, particularly for the development of fusionless, growth-guiding techniques. Currently, there is lack of data in this field. The objective of this study was, therefore, to compute segmental flexibility indices (standing angle minus corrected angle/standing angle). We compared segmental disc angles in 76 preoperative sets of standing and fulcrum-bending radiographs of thoracic curves (paired, two-tailed t tests, p < 0.05). The mean standing Cobb angle was 59.7 degrees (range 41.3 degrees -95 degrees ) and the flexibility index of the curve was 48.6\% (range 16.6-78.8\%). The disc angles showed symmetric periapical distribution with significant decrease (all p values <0.0001) for every cephalad (+) and caudad (-) level change. The periapical levels +1 and -1 wedged at 8.3 degrees and 8.7 degrees (range 3.5 degrees -14.8 degrees ), respectively. All angles were significantly smaller on the-bending views (p values <0.0001). We noted mean periapical flexibility indices of 46\% (+1), 49\% (-1), 57\% (+2) and 81\% (-2), which were significantly less (p < 0.001) than for the group of remote levels 105\% (+3), 149\% (-3), 231\% (+4) and 300\% (-4). The discal and bony wedging was 60 and 40\%, respectively, and mean values 35 degrees and 24 degrees (p < 0.0001). Their relationship with the Cobb angle showed a moderate correlation (r = 0.56 and 0.45). Functional, radiographic analysis of idiopathic thoracic scoliosis revealed significant, homogenous segmental tethering confined to four periapical levels. Future research will aim at in vivo segmental measurements in three planes under defined load to provide in-depth data for novel therapeutic strategies.
Resumo:
This work covers the synthesis of second-generation, ethylene glycol dendrons covalently linked to a surface anchor that contains two, three, or four catechol groups, the molecular assembly in aqueous buffer on titanium oxide surfaces, and the evaluation of the resistance of the monomolecular adlayers against nonspecific protein adsorption in contact with full blood serum. The results were compared to those of a linear poly(ethylene glycol) (PEG) analogue with the same molecular weight. The adsorption kinetics as well as resulting surface coverages were monitored by ex situ spectroscopic ellipsometry (VASE), in situ optical waveguide lightmode spectroscopy (OWLS), and quartz crystal microbalance with dissipation (QCM-D) investigations. The expected compositions of the macromolecular films were verified by X-ray photoelectron spectroscopy (XPS). The results of the adsorption study, performed in a high ionic strength ("cloud-point") buffer at room temperature, demonstrate that the adsorption kinetics increase with increasing number of catechol binding moieties and exceed the values found for the linear PEG analogue. This is attributed to the comparatively smaller and more confined molecular volume of the dendritic macromolecules in solution, the improved presentation of the catechol anchor, and/or their much lower cloud-point in the chosen buffer (close to room temperature). Interestingly, in terms of mechanistic aspects of "nonfouling" surface properties, the dendron films were found to be much stiffer and considerably less hydrated in comparison to the linear PEG brush surface, closer in their physicochemical properties to oligo(ethylene glycol) alkanethiol self-assembled monolayers than to conventional brush surfaces. Despite these differences, both types of polymer architectures at saturation coverage proved to be highly resistant toward protein adsorption. Although associated with higher synthesis costs, dendritic macromolecules are considered to be an attractive alternative to linear polymers for surface (bio)functionalization in view of their spontaneous formation of ultrathin, confluent, and nonfouling monolayers at room temperature and their outstanding ability to present functional ligands (coupled to the termini of the dendritic structure) at high surface densities.
Resumo:
We present an analysis of daily extreme precipitation events for the extended winter season (October–March) at 20 Mediterranean coastal sites covering the period 1950–2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series). Three stations (one in the western Mediterranean and the others in the eastern basin) have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series) is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa) has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus) show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous ascent motions and an increase of the low- to mid-tropospheric moisture. Furthermore, the jet stream position (during ≥5-year return level events) supports the eastern basin being in a divergence area, where ascent motions are favoured. Our results contribute to an improved understanding of daily precipitation extremes in the cold season and associated large scale atmospheric features.
Resumo:
Previous findings in rats and in human vegetarians suggest that the plasma carnitine concentration and/or carnitine ingestion may influence the renal reabsorption of carnitine. We tested this hypothesis in rats with secondary carnitine deficiency following treatment with N-trimethyl-hydrazine-3-propionate (THP) for 2 weeks and rats treated with excess L-carnitine for 2 weeks. Compared to untreated control rats, treatment with THP was associated with an approximately 70% decrease in plasma carnitine and with a 74% decrease in the skeletal muscle carnitine content. In contrast, treatment with L-carnitine increased plasma carnitine levels by 80% and the skeletal muscle carnitine content by 50%. Treatment with L-carnitine affected neither the activity of carnitine transport into isolated renal brush border membrane vesicles, nor renal mRNA expression of the carnitine transporter OCTN2. In contrast, in carnitine deficient rats, carnitine transport into isolated brush border membrane vesicles was increased 1.9-fold compared to untreated control rats. Similarly, renal mRNA expression of OCTN2 increased by a factor of 1.7 in carnitine deficient rats, whereas OCTN2 mRNA expression remained unchanged in gut, liver or skeletal muscle. Our study supports the hypothesis that a decrease in the carnitine plasma and/or glomerular filtrate concentration increases renal expression and activity of OCTN2.
Resumo:
BACKGROUND: The objective of the study was to correlate MR-detectable motility alterations of the terminal ileum with biopsy-documented active and chronic changes in Crohn's disease. METHODS: This IRB approved retrospective analysis of 43 patients included magnetic resonance enterography (MRE) and terminal ileum biopsies (<2 weeks apart). Motility was measured at the terminal ileum using coronal 2D trueFISP pulse sequences (1.5T MRI,TR 83.8,TE1.89) and dedicated motility assessment software. Motility grading (hypermotility, normal, hypomotility, complete arrest) was agreed by two experienced readers. Motility was compared and correlated with histopathology using two-tailed Kruskal-Wallis test and paired Spearman Rank-Order Correlation tests. KEY RESULTS: Motility abnormalities were present in 27/43 patients: nine hypomotility and 18 complete arrest. Active disease was diagnosed on 15 biopsies: eight moderate and seven severe inflammatory activity. Chronic changes were diagnosed on 17 biopsies: 13 moderate and four severe cases. In four patients with normal motility alterations on histopathology were diagnosed. Histopathology correlated with presence (P = 0.0056 for hypomotility and P = 0.0119 for complete arrest) and grade (P < 0.0001; P = 0.0004) of motility alterations. A significant difference in the motility was observed in patients with active or chronic CD compared with patients without disease (P < 0.001; P = 0.0024). CONCLUSIONS & INFERENCES: MR-detectable motility changes of the terminal ileum correlate with histopathological findings both in active and chronic CD. Motility changes may indicate the presence pathology, but do not allow differentiation of active and chronic disease.
Resumo:
BACKGROUND: Ankle-brachial pressure index (ABI) is a simple, inexpensive, and useful tool in the detection of peripheral arterial occlusive disease (PAD). The current guidelines published by the American Heart Association define ABI as the quotient of the higher of the systolic blood pressures (SBPs) of the two ankle arteries of that limb (either the anterior tibial artery or the posterior tibial artery) and the higher of the two brachial SBPs of the upper limbs. We hypothesized that considering the lower of the two ankle arterial SBPs of a side as the numerator and the higher of the brachial SBPs as the denominator would increase its diagnostic yield. METHODS: The former method of eliciting ABI was termed as high ankle pressure (HAP) and the latter low ankle pressure (LAP). ABI was assessed in 216 subjects and calculated according to the HAP and the LAP method. ABI findings were confirmed by arterial duplex ultrasonography. A significant arterial stenosis was assumed if ABI was <0.9. RESULTS: LAP had a sensitivity of 0.89 and a specificity of 0.93. The HAP method had a sensitivity of 0.68 and a specificity of 0.99. McNemar's test to compare the results of both methods demonstrated a two-tailed P < .0001, indicating a highly significant difference between both measurement methods. CONCLUSIONS: LAP is the superior method of calculating ABI to identify PAD. This result is of great interest for epidemiologic studies applying ABI measurements to detect PAD and assessing patients' cardiovascular risk.
Resumo:
The H(+) -coupled divalent metal-ion transporter DMT1 serves as both the primary entry point for iron into the body (intestinal brush-border uptake) and the route by which transferrin-associated iron is mobilized from endosomes to cytosol in erythroid precursors and other cells. Elucidating the molecular mechanisms of DMT1 will therefore increase our understanding of iron metabolism and the etiology of iron overload disorders. We expressed wild type and mutant DMT1 in Xenopus oocytes and monitored metal-ion uptake, currents and intracellular pH. DMT1 was activated in the presence of an inwardly directed H(+) electrochemical gradient. At low extracellular pH (pH(o)), H(+) binding preceded binding of Fe(2+) and its simultaneous translocation. However, DMT1 did not behave like a typical ion-coupled transporter at higher pH(o), and at pH(o) 7.4 we observed Fe(2+) transport that was not associated with H(+) influx. His(272) --> Ala substitution uncoupled the Fe(2+) and H(+) fluxes. At low pH(o), H272A mediated H(+) uniport that was inhibited by Fe(2+). Meanwhile H272A-mediated Fe(2+) transport was independent of pH(o). Our data indicate (i) that H(+) coupling in DMT1 serves to increase affinity for Fe(2+) and provide a thermodynamic driving force for Fe(2+) transport and (ii) that His-272 is critical in transducing the effects of H(+) coupling. Notably, our data also indicate that DMT1 can mediate facilitative Fe(2+) transport in the absence of a H(+) gradient. Since plasma membrane expression of DMT1 is upregulated in liver of hemochromatosis patients, this H(+) -uncoupled facilitative Fe(2+) transport via DMT1 can account for the uptake of nontransferrin-bound plasma iron characteristic of iron overload disorders.
Resumo:
OBJECTIVE: The capability of drinks and foods to resist pH changes brought about by salivary buffering may play an important role in the dental erosion process in children. The aim of the present study was to test fruit yogurt, a popular snack for children, and the degrees of saturation (pK-pl) with respect to hydroxyapatite and fluorapatite to determine their erosive potential. METHOD AND MATERIALS: A variety of fruit yogurt was tested. To test the pH, 8 readings were taken with a pH electrode for each yogurt. Calcium content was detected by atomic absorption spectrophotometer, phosphorus by the inductively coupled plasma method, and fluoride content by ion chromatography. The degrees of saturation of hydroxyapatite and fluorapatite were calculated by use of a computer program. Statistical analysis was performed using 2-tailed analysis of variance (P < .05) and a post hoc test (Tukey) to determine differences between groups. RESULTS: The pH of each fruit concentrate was significantly different, except for banana yogurt. Except for the phosphorus content of raspberry yogurt, the calcium and phosphorus content for each fruit concentrate were significantly different. Fluoride levels were the same for all yogurts tested, and the degrees of saturation of hydroxyapatite and fluorapatite was positive, indicating supersaturation. CONCLUSION: It could be stated that fruit yogurt has no erosive potential.
Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant)
Resumo:
Action of human small intestinal brush border carbohydrate digesting enzymes is thought to involve only final hydrolysis reactions of oligosaccharides to monosaccharides. In vitro starch digestibility assays use fungal amyloglucosidase to provide this function. In this study, recombinant N-terminal subunit enzyme of human small intestinal maltase-glucoamylase (rhMGAM-N) was used to explore digestion of native starches from different botanical sources. The susceptibilities to enzyme hydrolysis varied among the starches. The rate and extent of hydrolysis of amylomaize-5 and amylomaize-7 into glucose were greater than for other starches. Such was not observed with fungal amyloglucosidase or pancreatic alpha-amylase. The degradation of native starch granules showed a surface furrowed pattern in random, radial, or tree-like arrangements that differed substantially from the erosion patterns of amyloglucosidase or alpha-amylase. The evidence of raw starch granule degradation with rhMGAM-N indicates that pancreatic alpha-amylase hydrolysis is not a requirement for native starch digestion in the human small intestine.
Resumo:
Epithelial cells in the human small intestine express meprin, an astacin-like metalloprotease, which accumulates normally at the brush border membrane and in the gut lumen. Therefore, meprin is targeted towards luminal components. In coeliac disease patients, peptides from ingested cereals trigger mucosal inflammation in the small intestine, disrupting epithelial cell differentiation and function. Using in situ hybridisation on duodenal tissue sections, we observed a marked shift of meprin mRNA expression from epithelial cells, the predominant expression site in normal mucosa, to lamina propria leukocytes in coeliac disease. Meprin thereby gains access to the substrate repertoire present beneath the epithelium.