9 resultados para Brucellosis
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Kyrgyzstan reported 77.5 new human brucellosis cases per 100,000 people in 2007, which is one of the highest incidences worldwide. In Kyrgyzstan, the currently used diagnostic tests in humans and animals are the Rose Bengal Test and the Huddleson test. A national representative cross-sectional study using cluster sampling proportional to size in humans, cattle, sheep, and goats was undertaken to assess the apparent seroprevalence in humans and animals. A total of 4,936 livestock sera and 1,774 human sera were tested in Naryn, Chuy, and Osh Oblasts. The overall apparent seroprevalences of brucellosis were 8.8% in humans (95% CI 4.5-16.5), 2.8% (95% CI 1.6-4.9%) in cattle, 3.3% (95% CI 1.5-6.9%) in sheep, and 2.5% (95% CI 1.4-4.5%) in goats. Naryn Oblast had the highest seroprevalences in humans and sheep. More men than women were seropositive (OR = 1.96; P < 0.001). Human seroprevalence was significantly associated with small ruminant seroprevalence but not with cattle seroprevalence. Annual incidence of human brucellosis exposure, measured by serological tests, was more than ten times higher than the annual incidence of reported clinical brucellosis cases. This indicates an under-reporting of human brucellosis cases, even if only a fraction of seropositive people have clinical symptoms. In conclusion, this study confirms the high seroprevalence of brucellosis in Kyrgyzstan and warrants rapid effective intervention, among others, by mass vaccination of sheep and goats but also of cattle.
Resumo:
During two survey rounds of a national surveillance system for infectious diseases in wild boar in Switzerland, each lasting four months from November to February, between 2001 and 2003, 1949 blood samples and 62 tissue samples from the spleen and 50 from the reproductive organs were collected from hunted wild boar. The survey was designed so that freedom from infection could be detected with a probability of 95 per cent at a threshold prevalence of less than 1 per cent for classical swine fever and Aujeszky's disease and less than 1.5 per cent for brucellosis. There was no serological evidence of classical swine fever or Aujeszky's disease, but brucellosis due to Brucella suis biovar 2 was confirmed serologically and by bacterial isolation.
Resumo:
BACKGROUND: Although brucellosis (Brucella spp.) and Q Fever (Coxiella burnetii) are zoonoses of global importance, very little high quality data are available from West Africa. METHODS/PRINCIPAL FINDINGS: A serosurvey was conducted in Togo's main livestock-raising zone in 2011 in 25 randomly selected villages, including 683 people, 596 cattle, 465 sheep and 221 goats. Additionally, 464 transhumant cattle from Burkina Faso were sampled in 2012. The serological analyses performed were the Rose Bengal Test and ELISA for brucellosis and ELISA and the immunofluorescence assay (IFA) for Q Fever Brucellosis did not appear to pose a major human health problem in the study zone, with only 7 seropositive participants. B. abortus was isolated from 3 bovine hygroma samples, and is likely to be the predominant circulating strain. This may explain the observed seropositivity amongst village cattle (9.2%, 95%CI:4.3-18.6%) and transhumant cattle (7.3%, 95%CI:3.5-14.7%), with an absence of seropositive small ruminants. Exposure of livestock and people to C. burnetii was common, potentially influenced by cultural factors. People of Fulani ethnicity had greater livestock contact and a significantly higher seroprevalence than other ethnic groups (Fulani: 45.5%, 95%CI:37.7-53.6%; non-Fulani: 27.1%, 95%CI:20.6-34.7%). Appropriate diagnostic test cut-off values in endemic settings requires further investigation. Both brucellosis and Q Fever appeared to impact on livestock production. Seropositive cows were more likely to have aborted a foetus during the previous year than seronegative cows, when adjusted for age. This odds was 3.8 times higher (95%CI: 1.2-12.1) for brucellosis and 6.7 times higher (95%CI: 1.3-34.8) for Q Fever. CONCLUSIONS: This is the first epidemiological study of zoonoses in Togo in linked human and animal populations, providing much needed data for West Africa. Exposure to Brucella and C. burnetii is common but further research is needed into the clinical and economic impact.
Resumo:
Brucella suis biovar 2 is the most common aetiological agent of porcine brucellosis in Europe. B. suis biovar 2 is considered to have low zoonotic potential, but is a causative agent of reproductive losses in pigs, and it is thus economically important. The multilocus variable-number of tandem repeats genotyping analysis of 16 loci (MLVA-16) has proven to be highly discriminatory and is the most suitable assay for simultaneously identifying B. suis and tracking infections. The aim of this study was to investigate the relatedness between isolates of B. suis biovar 2 obtained during a brucellosis outbreak in domestic pigs and isolates from wild boars and hares collected from proximal or remote geographical areas by MLVA-16. A cluster analysis of the MLVA-16 data revealed that most of the isolates obtained from Switzerland clustered together, with the exception of one isolate. The outbreak isolates constituted a unique subcluster (with a genetic similarity >93.8%) distinct from that of the isolates obtained from wild animals, suggesting that direct transmission of the bacterium from wild boars to domestic pigs did not occur in this outbreak. To obtain a representative number of isolates for MLVA-16, alternative methods of Brucella spp. isolation from tissue samples were compared with conventional direct cultivation on a Brucella-selective agar. We observed an enhanced sensitivity when mechanical homogenisation was followed by host cell lysis prior to cultivation on the Brucella-selective agar. This work demonstrates that MLVA-16 is an excellent tool for both monitoring brucellosis and investigating outbreaks. Additionally, we present efficient alternatives for the isolation of Brucella spp.
Resumo:
BACKGROUND: Control of brucellosis in livestock, wildlife and humans depends on the reliability of the methods used for detection and identification of bacteria. In the present study, we describe the evaluation of the recently established real-time PCR assay based on the Brucella-specific insertion sequence IS711 with blood samples from 199 wild boars (first group of animals) and tissue samples from 53 wild boars (second group of animals) collected in Switzerland. Results from IS711 real-time PCR were compared to those obtained by bacterial isolation, Rose Bengal Test (RBT), competitive ELISA (c-ELISA) and indirect ELISA (i-ELISA). RESULTS: In the first group of animals, IS711 real-time PCR detected infection in 11.1% (16/144) of wild boars that were serologically negative. Serological tests showed different sensitivities [RBT 15.6%, c-ELISA 7.5% and i-ELISA 5.5%] and only 2% of blood samples were positive with all three tests, which makes interpretation of the serological results very difficult. Regarding the second group of animals, the IS711 real-time PCR detected infection in 26% of animals, while Brucella spp. could be isolated from tissues of only 9.4% of the animals. CONCLUSION: The results presented here indicate that IS711 real-time PCR assay is a specific and sensitive tool for detection of Brucella spp. infections in wild boars. For this reason, we propose the employment of IS711 real-time PCR as a complementary tool in brucellosis screening programs and for confirmation of diagnosis in doubtful cases.
Resumo:
The incidence of human brucellosis in Kyrgyzstan has been increasing in the last years and was identified as a priority disease needing most urgent control measures in the livestock population. The latest species identification of Brucella isolates in Kyrgyzstan was carried out in the 1960s and investigated the circulation of Brucella abortus, B. melitensis, B. ovis, and B. suis. However, supporting data and documentation of that experience are lacking. Therefore, typing of Brucella spp. and identification of the most important host species are necessary for the understanding of the main transmission routes and to adopt an effective brucellosis control policy in Kyrgyzstan. Overall, 17 B. melitensis strains from aborted fetuses of sheep and cattle isolated in the province of Naryn were studied. All strains were susceptible to trimethoprim-sulfamethoxazole, gentamicin, rifampin, ofloxacin, streptomycin, doxycycline, and ciprofloxacin. Multilocus variable number tandem repeat analysis showed low genetic diversity. Kyrgyz strains seem to be genetically associated with the Eastern Mediterranean group of the Brucella global phylogeny. We identified and confirmed transmission of B. melitensis to cattle and a close genetic relationship between B. melitensis strains isolated from sheep sharing the same pasture.
Resumo:
Granulomatous infections are commonly associated with mycobacteria, brucellosis, actinomycosis, nocardiosis, spirochetes, and fungi. Rarely, granuloma formation is a host response to other bacterial infection. Osteomyelitis and osteitis that reactivate many years after the primary episode is a known phenomenon. A reactivation that presents as a granulomatous disease is rare. We present a case of reactivated osteitis due to Moraxella osloensis with consecutive granuloma formation.