22 resultados para Broiler frozen
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Taking intraoperative frozen sections (FS) is a widely used procedure in oncologic surgery. However so far no evidence of an association of FS analysis and premalignant changes in the surgical margin exists. Therefore, the aim of this study was to evaluate the impact of FS on different categories of the final margins of squamous cell carcinoma (SCC) of the oral cavity and lips.
Resumo:
We tested the use of multiplex real-time PCR for detection and quantification of Campylobacter jejuni and Campylobacter coli on broiler carcass neck skin samples collected during 2008 from slaughterhouses in Switzerland. Results from an established TaqMan assay based on two different targets (hipO and ceuE for C. jejuni and C. coli, respectively) were corroborated with data from a newly developed assay based on a single-nucleotide polymorphism in the fusA gene, which allows differentiation between C. jejuni and C. coli. Both multiplex real-time PCRs were applied simultaneously for direct detection, differentiation, and quantification of Campylobacter from 351 neck skin samples and compared with culture methods. There was good correlation in detection and enumeration between real-time PCR results and quantitative culture, with real-time PCR being more sensitive. Overall, 251 (71.5%) of the samples were PCR positive for Campylobacter, with 211 (60.1%) in the hipO-ceuE assays, 244 (69.5%) in the fusA assay, and 204 (58.1%) of them being positive in both PCR assays. Thus, the fusA assay was similarly sensitive to the enrichment culture (72.4% positive); however, it is faster and allows for quantification. In addition, real-time PCR allowed for species differentiation; roughly 60% of positive samples contained C. jejuni, less than 10% C. coli, and more than 30% contained both species. Real-time PCR proved to be a suitable method for direct detection, quantification, and differentiation of Campylobacter from carcasses, and could permit time-efficient surveillance of these zoonotic agents.
Resumo:
To obtain genetic information about Campylobacter jejuni and Campylobacter coli from broilers and carcasses at slaughterhouses, we analyzed and compared 340 isolates that were collected in 2008 from the cecum right after slaughter or from the neck skin after processing. We performed rpoB sequence-based identification, multilocus sequence typing (MLST), and flaB sequence-based typing; we additionally analyzed mutations within the 23S rRNA and gyrA genes that confer resistance to macrolide and quinolone antibiotics, respectively. The rpoB-based identification resulted in a distribution of 72.0% C. jejuni and 28.0% C. coli. The MLST analysis revealed that there were 59 known sequence types (STs) and 6 newly defined STs. Most of the STs were grouped into 4 clonal complexes (CC) that are typical for poultry (CC21, CC45, CC257, and CC828), and these represented 61.8% of all of the investigated isolates. The analysis of 95 isolates from the cecum and from the corresponding carcass neck skin covered 44 different STs, and 54.7% of the pairs had matching genotypes. The data indicate that cross-contamination from various sources during slaughter may occur, although the majority of Campylobacter contamination on carcasses appeared to originate from the slaughtered flock itself. Mutations in the 23S rRNA gene were found in 3.1% of C. coli isolates, although no mutations were found in C. jejuni isolates. Mutations in the gyrA gene were observed in 18.9% of C. jejuni and 26.8% of C. coli isolates, which included two C. coli strains that carried mutations conferring resistance to both classes of antibiotics. A relationship between specific genotypes and antibiotic resistance/susceptibility was observed.
Resumo:
Vital tissue provided by fresh frozen tissue banking is often required for genetic tumor profiling and tailored therapies. However, the potential patient benefits of fresh frozen tissue banking are currently limited to university hospitals. The objective of the present pilot study--the first one in the literature--was to evaluate whether fresh frozen tissue banking is feasible in a regional hospital without an integrated institute of pathology.
Resumo:
The epidemiology of an enrofloxacin-resistant Escherichia coli clone was investigated during two separate outbreaks of colibacillosis in the Danish broiler production. In total five flocks were reported affected by the outbreaks. Recorded first-week mortalities were in the range of 1.7-12.7%. The clone was first isolated from dead broilers and subsequently demonstrated in samples from associated hatchers and the parent flock with its embryonated eggs, suggesting a vertical transmission from the parents. The second outbreak involved two broiler flocks unrelated to the affected flocks from the first outbreak. However, the clone could not be demonstrated in the associated parent flock. Furthermore, samplings from grand-parent flocks were negative for the outbreak clone. The clonality was evaluated by plasmid profiling and pulsed-field gel electrophoresis. None of the recognized virulence factors were demonstrated in the outbreak clone by microarray and PCR assay. The molecular background for the fluoroquinolone-resistance was investigated and point mutations in gyrA and parC leading to amino-acid substitutions in quinolone-resistance determining regions of GyrA and ParC were demonstrated. Vertical transmission of enrofloxacin-resistant E. coli from healthy parents resulting in high first-week mortality in the offspring illustrates the potential of the emergence and spreading of fluoroquinolone-resistant bacteria in animal husbandry, even though the use of fluoroquinolones is restricted.
Resumo:
PURPOSE: We evaluated the incidence of pathological findings of the ureter at cystectomy for transitional cell carcinoma of the bladder and assessed the usefulness of intraoperative frozen section examination of the ureter. MATERIALS AND METHODS: Histopathological findings of ureteral frozen section examination were compared to the corresponding permanent sections and the diagnostic accuracy of frozen section examination was evaluated. These segments were then compared to the more proximal ureteral segments resected at the level where they cross over the common iliac arteries. The histopathological findings of the ureteral segments were then correlated for upper urinary tract recurrence and overall survival. RESULTS: Transitional cell carcinoma or carcinoma in situ was found on frozen section examination of the distal ureter in 39 of 805 patients (4.8%) and on permanent sections in 29 (3.6%). In 755 patients the false-negative rate of frozen section examination of the ureters was 0.8%. Of the patients with carcinoma in situ diagnosed on the first frozen section examination 80% also had carcinoma in situ in the bladder. Transitional cell carcinoma or carcinoma in situ in the most proximally resected ureteral segments was found in 1.2% of patients. After radical cystectomy there was tumor recurrence in the upper urinary tract in 3% of patients with negative ureteral frozen section examination and in 17% with carcinoma in situ on frozen section examination. CONCLUSIONS: Routine frozen section examination of the ureters at radical cystectomy is only recommended for patients with carcinoma in situ of the bladder, provided the ureters are resected where they cross the common iliac arteries.
Resumo:
We describe the measurement, at 100 K, of the SIMS relative sensitivity factors (RSFs) of the main physiological cations Na+, K+, Mg2+, and Ca2+ in frozen-hydrated (F-H) ionic solutions. Freezing was performed by either plunge freezing or high-pressure freezing. We also report the measurement of the RSFs in flax fibers, which are a model for ions in the plant cell wall, and in F-H ionic samples, which are a model for ions in the vacuole. RSFs were determined under bombardment with neutral oxygen (FAB) for both the fibers and the F-H samples. We show that referencing to ice-characteristic secondary ions is of little value in determining RSFs and that referencing to K is preferable. The RSFs of Na relative to K and of Ca relative to Mg in F-H samples are similar to their respective values in fiber samples, whereas the RSFs of both Ca and Mg relative to K are lower in fibers than in F-H samples. Our data show that the physical factors important for the determination of the RSFs are not the same in F-H samples and in homogeneous matrixes. Our data show that it is possible to perform a SIMS relative quantification of the cations in frozen-hydrated samples with an accuracy on the order of 15%. Referencing to K permits the quantification of the ionic ratios, even when the absolute concentration of the referencing ion is unknown. This is essential for physiological studies of F-H biological samples.
Resumo:
The treatment of complex aortic pathologies involving the ascending aorta, the aortic arch, and the descending aorta remains a challenging issue in aortic surgery. The frozen elephant trunk procedure effectively combines surgical and interventional technologies in the treatment of extensive aortic aneurysms and dissections. We present two patients with complex aortic lesions involving all three segments of the thoracic aorta. The device used in our series is the new E-vita open hybrid prosthesis consisting of a proximal woven polyester tube and a distal self-expandable nitinol stent graft, which can be delivered antegrade into the descending aorta.
Resumo:
OBJECTIVE: The purpose of this study was to analyze and compare the value of fine-needle aspiration cytology (FNAC) and frozen section (FS) analysis in the assessment of parotid gland tumors. STUDY DESIGN: Chart review and cross-sectional analysis. SUBJECTS AND METHODS: FNAC and FS analysis of 110 parotid tumors, 68 malignancies and 42 benign tumors, were analyzed and compared with the final histopathologic diagnosis. RESULTS: The accuracy, sensitivity, and specificity of FNAC in detecting malignant tumors were 79 percent, 74 percent, and 88 percent, respectively. On FS analysis, the accuracy, sensitivity, and specificity in detecting malignant tumors were 94 percent, 93 percent, and 95 percent, respectively. The histologic tumor type was correctly diagnosed by FNAC and FS in 27 of 42 (64%) and 39 of 42 (93%) benign tumors, respectively, and in 24 of 68 (35%) and 49 of 68 (72%) malignant neoplasms, respectively. CONCLUSION: The current analysis showed a superiority of FS compared with FNAC regarding the diagnosis of malignancy and tumor typing. FNAC alone is not prone to determine the surgical management of parotid malignancies.
Resumo:
Transmission electron microscopy has provided most of what is known about the ultrastructural organization of tissues, cells, and organelles. Due to tremendous advances in crystallography and magnetic resonance imaging, almost any protein can now be modeled at atomic resolution. To fully understand the workings of biological "nanomachines" it is necessary to obtain images of intact macromolecular assemblies in situ. Although the resolution power of electron microscopes is on the atomic scale, in biological samples artifacts introduced by aldehyde fixation, dehydration and staining, but also section thickness reduces it to some nanometers. Cryofixation by high pressure freezing circumvents many of the artifacts since it allows vitrifying biological samples of about 200 mum in thickness and immobilizes complex macromolecular assemblies in their native state in situ. To exploit the perfect structural preservation of frozen hydrated sections, sophisticated instruments are needed, e.g., high voltage electron microscopes equipped with precise goniometers that work at low temperature and digital cameras of high sensitivity and pixel number. With them, it is possible to generate high resolution tomograms, i.e., 3D views of subcellular structures. This review describes theory and applications of the high pressure cryofixation methodology and compares its results with those of conventional procedures. Moreover, recent findings will be discussed showing that molecular models of proteins can be fitted into depicted organellar ultrastructure of images of frozen hydrated sections. High pressure freezing of tissue is the base which may lead to precise models of macromolecular assemblies in situ, and thus to a better understanding of the function of complex cellular structures.