4 resultados para Brassica napus

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, it has been shown that water fluxes across biological membranes occur not only through the lipid bilayer but also through specialized water-conducting proteins, the so called aquaporins. In the present study, we investigated in young and mature leaves of Brassica napus L. the expression and localization of a vacuolar aquaporin homologous to radish γ-tonoplast intrinsic protein/vacuolar-membrane integral protein of 23 kDa (TIP/VM 23). In-situ hybridization showed that these tonoplast aquaporins are highly expressed not only in developing but also in mature leaves, which export photosynthates. No substantial differences could be observed between different tissues of young and mature leaves. However, independent of the developmental stage, an immunohistochemical approach revealed that the vacuolar membrane of bundle-sheath cells contained more protein cross-reacting with antibodies raised against radish γ-TIP/VM 23 than the mesophyll cells. The lowest labeling was detected in phloem cells. We compared these results with the distribution of plasma-membrane aquaporins cross-reacting with antibodies detecting a domain conserved among members of the plasma-membrane intrinsic protein 1 (PIP1) subfamily. We observed the same picture as for the vacuolar aquaporins. Furthermore, a high density of gold particles labeling proteins of the PIP1 group could be observed in plasmalemmasomes of the vascular parenchyma. Our results indicate that γ-TIP/VM 23 and PIP1 homologous proteins show a similar expression pattern. Based on these results it is tempting to speculate that bundle-sheath cells play an important role in facilitating water fluxes between the apoplastic and symplastic compartments in close proximity to the vascular tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant quality is one of the main factors influencing the fitness of phytophagous insects. Plant quality can vary not only among genotypes of the same host plant species, but also relative to the insect sex or its life stage. In the present study, the performance of larvae and adults of the pollen beetle (Meligethes aeneus F., Coleoptera: Nitidulidae), a major insect pest of oilseed rape crops, is compared on six genotypes of oilseed rape (Brassica napus). All of the traits that are measured vary among genotypes, and comprise larval developmental duration, life span of unfed emerging adults and survival time of field-sampled adults fed with pollen from the different genotypes. No correlation is found between insect performance and quantity of food available, showing that the quality of the food (i.e. pollen) is the fitness determinant for this insect species. Additionally, the performance of larvae and adults is also not correlated despite use of the same plant genotypes, suggesting that the determinants of pollen quality differ at least partially between both life stages. It is hypothesized that this may be a result of extensive differences in diet breadth between the life stages: larvae are specialists of brassicaceous plants, whereas adults are generalists. Finally, it is suggested that the manipulation of plant quality to increase pollen beetle development time may comprise a valuable strategy for favouring biological control by natural enemies of this pest; for example, as a result of extending the vulnerability window of larvae to attack by parasitoids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During senescence, chlorophyll (chl) is metabolized to colorless nonfluorescent chl catabolites (NCCs). A central reaction of the breakdown pathway is the ring cleavage of pheophorbide (pheide) a to a primary fluorescent chl catabolite. Two enzymes catalyze this reaction, pheide a oxygenase (PAO) and red chl catabolite reductase. Five NCCs and three fluorescent chl catabolites (FCCs) accumulated during dark-induced chl breakdown in Arabidopsis (Arabidopsis thaliana). Three of these NCCs and one FCC (primary fluorescent chl catabolite-1) were identical to known catabolites from canola (Brassica napus). The presence in Arabidopsis of two modified FCCs supports the hypothesis that modifications, as present in NCCs, occur at the level of FCC. Chl degradation in Arabidopsis correlated with the accumulation of FCCs and NCCs, as well as with an increase in PAO activity. This increase was due to an up-regulation of Pao gene expression. In contrast, red chl catabolite reductase is not regulated during leaf development and senescence. A pao1 knockout mutant was identified and analyzed. The mutant showed an age- and light-dependent cell death phenotype on leaves and in flowers caused by the accumulation of photoreactive pheide a. In the dark, pao1 exhibited a stay-green phenotype. The key role of PAO in chl breakdown is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In extracts of senescent leaves of the tobacco plant Nicotiana rustica, two colorless compounds with UV/VIS characteristics of nonfluorescent chlorophyll catabolites (NCCs) were detected and tentatively identified as Nr-NCCs. These two polar NCCs were found in similar amounts in the fresh extracts, and their constitutions could be determined by spectroscopic analysis. The data showed both of the two Nr-NCCs to have the same tetrapyrrolic core structure, as reported previously for all other NCCs from senescent higher plants. In the less polar catabolite, named Nr-NCC-2, this core structure was conjugated with a glucopyranose unit, as similarly discovered earlier in Bn-NCC-2, an NCC from oilseed rape (Brassica napus). The more polar NCC from tobacco leaves, Nr-NCC-1, carried an additional malonyl substituent at the 6′-OH group of the glucopyranosyl moiety. Partial (enzyme-catalyzed) hydrolysis of Nr-NCC-1 gave Nr-NCC-2, while enzyme-catalyzed malonylation of Nr-NCC-2 gave Nr-NCC-1, establishing the identity of their basic tetrapyrrole structure. In earlier work (on the polar NCCs from oilseed rape), only separate glucopyranosyl and malonyl functionalities were detected. Nr-NCC-1, thus, represents a further variant of the structures of NCCs from senescent higher plants and exhibits an unprecedented peripheral refunctionalization in chlorophyll catabolites.