20 resultados para Brain Ischemia
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Brain edema is the main cause of death from brain infarction. The polarized expression of the water channel protein aquaporin-4 (AQP4) on astroglial endfeet surrounding brain microvessels suggests a role in brain water balance. Loss of astrocyte foot process anchoring to the basement membrane (BM) accompanied by the loss of polarized localization of AQP4 to astrocytic endfeet has been shown to be associated with vasogenic/extracellular edema in neuroinflammation. Here, we asked if loss of astrocyte polarity is also observed in cytotoxic/intracellular edema following focal brain ischemia after transient middle cerebral artery occlusion (tMCAO). Upon mild focal brain ischemia, we observed diminished immunostaining for the BM components laminin α4, laminin α2, and the proteoglycan agrin, in the core of the lesion, but not in BMs in the surrounding penumbra. Staining for the astrocyte endfoot anchorage protein β-dystroglycan (DG) was dramatically reduced in both the lesion core and the penumbra, and AQP4 and Kir4.1 showed a loss of polarized localization to astrocytic endfeet. Interestingly, we observed that mice deficient for agrin expression in the brain lack polarized localization of β-DG and AQP4 at astrocytic endfeet and do not develop early cytotoxic/intracellular edema following tMCAO. Taken together, these data indicate that the binding of DG to agrin embedded in the subjacent BM promotes polarized localization of AQP4 to astrocyte endfeet. Reduced DG protein levels and redistribution of AQP4 as observed upon tMCAO might therefore counteract early edema formation and reflect a beneficial mechanism operating in the brain to minimize damage upon ischemia.
Resumo:
Intravascular transplantation of neural stem cells represents a minimally invasive therapeutic approach for the treatment of central nervous system diseases. The cellular biodistribution after intravascular injection needs to be analyzed to determine the ideal delivery modality. We studied the biodistribution and efficiency of targeted central nervous system delivery comparing intravenous and intra-arterial (IA) administration of neural stem cells after brain ischemia.
Resumo:
To determine whether Toxoplasma gondii infection could modify biological phenomena associated with brain ischemia, we investigated the effect of permanent middle cerebral artery occlusion (MCAO) on neuronal survival, inflammation and redox state in chronically infected mice. Infected animals showed a 40% to 50% decrease of infarct size compared with non-infected littermates 1, 4 and 14 days after MCAO. The resistance of infected mice may be associated with increased basal levels of anti-inflammatory cytokines and/or a marked reduction of the MCAO-related brain induction of two pro-inflammatory cytokines, tumor necrosis factor-alpha and interferon-gamma (IFNgamma). In addition, potential anti-inflammatory/neuroprotective factors such as nerve growth factor, suppressor of cytokine signaling-3, superoxide dismutase activity, uncoupling protein-2 and glutathione (GSH) were upregulated in the brain of infected mice. Consistent with a role of GSH in central cytokine regulation, GSH depletion by diethyl maleate inhibited Toxoplasma gondii lesion resistance by increasing the proinflammatory cytokine IFNgamma brain levels. Overall, these findings indicate that chronic toxoplasmosis decisively influences both the inflammatory molecular events and outcome of cerebral ischemia.
Resumo:
BACKGROUND AND PURPOSE: Few data exist about clinical, radiologic findings, clinical outcome, and its predictors in patients with spontaneous vertebral artery dissection (sVAD). METHODS: Clinical characteristics, imaging findings, 3-month outcomes, and its predictors were investigated in consecutive patients with sVAD. RESULTS: One hundred sixty-nine patients with 195 sVAD were identified. Brain ischemia occurred in 131 patients (77%; ischemic stroke, n=114, 67%; transient ischemic attack, n=17, 10%). Three patients with ischemic stroke showed also signs of subarachnoid hemorrhage (SAH); 3 (2%) had SAH without ischemia. The 134 patients with brain ischemia or SAH had head and/or neck pain in 118 (88%) and pulsatile tinnitus in seven (5%) patients. The remaining 35 patients (21%) had isolated head and/or neck pain in 21 (12%) cases, asymptomatic sVAD in 13 (8%), and cervical radiculopathy in one case (1%). Location of sVAD was more often in the pars transversaria (V2; 35%) or atlas loop (V3; 34%) than in the prevertebral (V1; 20%) or intracranial (V4; 11%) segment (P=0.0001). Outcome was favorable (modified Rankin scale score 0 or 1) in 88 (82%) of 107 ischemic stroke patients with follow up. Two (2%) patients died. Low baseline National Institutes of Health Stroke Scale score (P<0.0001) and younger age (P=0.007) were independent predictors of favorable outcome. CONCLUSIONS: sVAD is predominantly located in the pars transversaria (V2) or the atlas loop (V3). Most patients show posterior circulation ischemia. Favorable outcome is observed in most ischemic strokes and independently predicted by low National Institutes of Health Stroke Scale score and younger age.
Resumo:
Experimental focal brain ischemia generates in the penumbra recurrent depolarizations which spread across the injured cortex inducing infarct growth. Transcranial direct current stimulation can induce a lasting, polarity-specific, modulation of cortical excitability. To verify whether cathodal transcranial direct current stimulation could reduce the infarct size and the number of depolarizations, focal ischemia was induced in the rat by the 3 vessels occlusion technique. In the first experiment 12 ischemic rats received cathodal stimulation (alternating 15min on and 15min off) starting 45min after middle cerebral artery occlusion and lasting 4h. In the second experiment 12 ischemic rats received cathodal transcranial direct current stimulation with the same protocol but starting soon after middle cerebral artery occlusion and lasting 6h. In both experiments controls were 12 ischemic rats not receiving stimulation. Cathodal stimulation reduced the infarct volume in the first experiment by 20% (p=0.002) and in the second by 30% (p=0.003). The area of cerebral infarction was smaller in animals receiving cathodal stimulation in both experiments (p=0.005). Cathodal stimulation reduced the number of depolarizations (p=0.023) and infarct volume correlated with the number of depolarizations (p=0.048). Our findings indicate that cathodal transcranial direct current stimulation exert a neuroprotective effect in the acute phase of stroke possibly decreasing the number of spreading depolarizations. These findings may have translational relevance and open a new avenue in neuroprotection of stroke in humans.
Resumo:
The effect of hypoxic preconditioning (PC) on hypoxic-ischemic (HI) injury was explored in glutathione peroxidase (GPx)-overexpressing mice (human GPx-transgenic [hGPx-tg]) mice. Six-day-old hGPx-tg mice and wild-type (Wt) littermates were pre-conditioned with hypoxia for 30 min and subjected to the Vannucci procedure of HI 24 h after the PC stimulus. Histopathological injury was determined 5 d later (P12). Additional animals were killed 2 h or 24 h after HI and ipsilateral cerebral cortices assayed for GPx activity, glutathione (GSH), and hydrogen peroxide (H2O2). In line with previous studies, hypoxic PC reduced injury in the Wt brain. Preconditioned Wt brain had increased GPx activity, but reduced GSH, relative to naive 24 h after HI. Hypoxic PC did not reduce injury to hGPx-tg brain and even reversed the protection previously reported in the hGPx-tg. GPx activity and GSH in hGPx-tg cortices did not change. Without PC, hGPx-tg cortex had less H2O2 accumulation than Wt at both 2 h and 24 h. With PC, H2O2 remained low in hGPx-tg compared with Wt at 2 h, but at 24 h, there was no longer a difference between hGPx-tg and Wt cortices. Accumulation of H2O2 may be a mediator of injury, but may also induce protective mechanisms.
Resumo:
The inflammatory response is a critical component of ischemic stroke. In addition to its physiological role, the mechanisms behind transendothelial recruitment of immune cells also offer a unique therapeutic opportunity for translational stem cell therapies. Recent reports have demonstrated homing of neural stem cells (NSC) into the injured brain areas after intravascular delivery. However, the mechanisms underlying the process of transendothelial recruitment remain largely unknown. Here we describe the critical role of the chemokine CCL2 and its receptor CCR2 in targeted homing of NSC after ischemia.
Resumo:
Vascular endothelial growth factor (VEGF) has potent angiogenic and neuroprotective effects in the ischemic brain. Its effect on axonal plasticity and neurological recovery in the post-acute stroke phase was unknown. Using behavioral tests combined with anterograde tract tracing studies and with immunohistochemical and molecular biological experiments, we examined effects of a delayed i.c.v. delivery of recombinant human VEGF(165), starting 3 days after stroke, on functional neurological recovery, corticorubral plasticity and inflammatory brain responses in mice submitted to 30 min of middle cerebral artery occlusion. We herein show that the slowly progressive functional improvements of motor grip strength and coordination, which are induced by VEGF, are accompanied by enhanced sprouting of contralesional corticorubral fibres that branched off the pyramidal tract in order to cross the midline and innervate the ipsilesional parvocellular red nucleus. Infiltrates of CD45+ leukocytes were noticed in the ischemic striatum of vehicle-treated mice that closely corresponded to areas exhibiting Iba-1+ activated microglia. VEGF attenuated the CD45+ leukocyte infiltrates at 14 but not 30 days post ischemia and diminished the microglial activation. Notably, the VEGF-induced anti-inflammatory effect of VEGF was associated with a downregulation of a broad set of inflammatory cytokines and chemokines in both brain hemispheres. These data suggest a link between VEGF's immunosuppressive and plasticity-promoting actions that may be important for successful brain remodeling. Accordingly, growth factors with anti-inflammatory action may be promising therapeutics in the post-acute stroke phase.
Resumo:
The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this discrepancy we investigated the temporo-spatial localization of PMNs early after transient ischemia in a murine transient middle cerebral artery occlusion (tMCAO) model and human stroke specimens. Using specific markers that distinguish PMN (Ly6G) from monocytes/macrophages (Ly6C) and that define the cellular and basement membrane boundaries of the neurovascular unit (NVU), histology and confocal microscopy revealed that virtually no PMNs entered the infarcted CNS parenchyma. Regardless of tMCAO duration, PMNs were mainly restricted to luminal surfaces or perivascular spaces of cerebral vessels. Vascular PMN accumulation showed no spatial correlation with increased vessel permeability, enhanced expression of endothelial cell adhesion molecules, platelet aggregation or release of neutrophil extracellular traps. Live cell imaging studies confirmed that oxygen and glucose deprivation followed by reoxygenation fail to induce PMN migration across a brain endothelial monolayer under flow conditions in vitro. The absence of PMN infiltration in infarcted brain tissues was corroborated in 25 human stroke specimens collected at early time points after infarction. Our observations identify the NVU rather than the brain parenchyma as the site of PMN action after CNS ischemia and suggest reappraisal of targets for therapies to reduce reperfusion injury after stroke.
Resumo:
To test a possible neuroprotective activity of 17β-estradiol in the neonatal rat brain exposed to hypoxic-ischemia (controlled hypoxia after unilateral carotid artery ligation).
Resumo:
Adverse outcome in bacterial meningitis is associated with the breakdown of the blood-brain barrier (BBB). Matrix-metalloproteinases (MMPs) facilitate this process by degradation of components of the BBB. This in turn results in acute complications of bacterial meningitis including edema formation, increased intracranial pressure and subsequent ischemia. We determined the parenchymal balance of MMP-9 and TIMP-1 (tissue inhibitor of MMP) and the structural integrity of the BBB in relation to cortical damage in an infant rat model of pneumococcal meningitis. The data demonstrate that the extent of cortical damage is significantly associated with parenchymal gelatinolytic activity and collagen type IV degradation. The increased gelatinolysis was found to be associated with a brain parenchymal imbalance of MMP-9/TIMP-1. These findings provide support to the concept that MMPs mediated disruption of the BBB contributes to the pathogenesis of bacterial meningitis and that protection of the vascular unit may have neuroprotective potential.
Resumo:
Oxidative stress is a critical component of the injury response to hypoxia-ischemia (HI) in the neonatal brain, and this response is unique and at times paradoxical to that seen in the mature brain. Previously, we showed that copper-zinc superoxide-dismutase (SOD1) over-expression is not beneficial to the neonatal mouse brain with HI injury, unlike the adult brain with ischemic injury. However, glutathione peroxidase 1 (GPx1) over-expression is protective to the neonatal mouse brain with HI injury. To further test the hypothesis that an adequate supply of GPx is critical to protection from HI injury, we crossed SOD1 over-expressing mice (hSOD-tg) with GPx1 over-expressing mice (hGPx-tg). Resulting litters contained wild-type (wt), hGPx-tg, hSOD-tg and hybrid hGPx-tg/hSOD-tg pups, which were subjected to HI at P7. Confirming previous results, the hGPx-tg mice had reduced injury compared to both Wt and hSOD-tg littermates. Neonatal mice over-expressing both GPx1 and SOD1 also had less injury compared to wt or hSOD-tg alone. A result of oxidative stress after neonatal HI is a decrease in the concentration of reduced (i.e. antioxidant-active) glutathione (GSH). In this study, we tested the effect of systemic administration of alpha-lipoic acid on levels of GSH in the cortex after HI. Although GSH levels were restored by 24h after HI, injury was not reduced compared to vehicle-treated mice. We also tested two other pharmacological approaches to reducing oxidative stress in hSOD-tg and wild-type littermates. Both the specific inhibitor of neuronal nitric oxide synthase, 7-nitroindazole (7NI), and the spin-trapping agent alpha-phenyl-tert-butyl-nitrone (PBN) did not reduce HI injury, however. Taken together, these results imply that H2O2 is a critical component of neonatal HI injury, and GPx1 plays an important role in the defense against this H2O2 and is thereby neuroprotective.
Resumo:
To assess the role of brain antioxidant capacity in the pathogenesis of neonatal hypoxic-ischemic brain injury, we measured the activity of glutathione peroxidase (GPX) in both human-superoxide dismutase-1 (hSOD1) and human-GPX1 overexpressing transgenic (Tg) mice after neonatal hypoxia-ischemia (HI). We have previously shown that mice that overexpress the hSOD1 gene are more injured than their wild-type (WT) littermates after HI, and that H(2)O(2) accumulates in HI hSOD1-Tg hippocampus. We hypothesized that lower GPX activity is responsible for the accumulation of H(2)O(2). Therefore, increasing the activity of this enzyme through gene manipulation should be protective. We show that brains of hGPX1-Tg mice, in contrast to those of hSOD-Tg, have less injury after HI than WT littermates: hGPX1-Tg, median injury score = 8 (range, 0-24) versus WT, median injury score = 17 (range, 2-24), p < 0.01. GPX activity in hSOD1-Tg mice, 2 h and 24 h after HI, showed a delayed and bilateral decline in the cortex 24 h after HI (36.0 +/- 1.2 U/mg in naive hSOD1-Tg versus 29.1 +/- 1.7 U/mg in HI cortex and 29.2 +/- 2.0 for hypoxic cortex, p < 0.006). On the other hand, GPX activity in hGPX1-Tg after HI showed a significant increase by 24 h in the cortex ipsilateral to the injury (48.5 +/- 5.2 U/mg, compared with 37.2 +/- 1.5 U/mg in naive hGPX1-Tg cortex, p < 0.008). These findings support the hypothesis that the immature brain has limited GPX activity and is more susceptible to oxidative damage and may explain the paradoxical effect seen in ischemic neonatal brain when SOD1 is overexpressed.
Resumo:
Excitatory amino acids are increasingly implicated in the pathogenesis of neuronal injury induced by a variety of CNS insults, such as ischemia, trauma, hypoglycemia, and epilepsy. Little is known about the role of amino acids in causing CNS injury in bacterial meningitis. Several amino acids were measured in cerebrospinal fluid and in microdialysis samples from the interstitial fluid of the frontal cortex in a rabbit model of pneumococcal meningitis. Cerebrospinal fluid concentrations of glutamate, aspartate, glycine, taurine, and alanine increased significantly in infected animals. Among the amino acids with known excitatory or inhibitory function, interstitial fluid concentrations of glutamate were significantly elevated (by 470%). Alanine, a marker for anaerobic glycolysis, also increased in the cortex of infected rabbits. The elevated glutamate concentrations in the brain extracellular space suggest that excitotoxic neuronal injury may play a role in bacterial meningitis.
Resumo:
OBJECT: Brain tissue acidosis is known to mediate neuronal death. Therefore the authors measured the main parameters of cerebral acid-base homeostasis, as well as their interrelations, shortly after severe traumatic brain injury (TBI) in humans. METHODS: Brain tissue pH, PCO2, PO2, and/or lactate were measured in 151 patients with severe head injuries, by using a Neurotrend sensor and/or a microdialysis probe. Monitoring was started as soon as possible after the injury and continued for up to 4 days. During the 1st day following the trauma, the brain tissue pH was significantly lower, compared with later time points, in patients who died or remained in a persistent vegetative state. Six hours after the injury, brain tissue PCO2 was significantly higher in patients with a poor outcome compared with patients with a good outcome. Furthermore, significant elevations in cerebral concentrations of lactate were found during the 1st day after the injury, compared with later time points. These increases in lactate were typically more pronounced in patients with a poor outcome. Similar biochemical changes were observed during later hypoxic events. CONCLUSIONS: Severe human TBI profoundly disturbs cerebral acid-base homeostasis. The observed pH changes persist for the first 24 hours after the trauma. Brain tissue acidosis is associated with increased tissue PCO2 and lactate concentration; these pathobiochemical changes are more severe in patients who remain in a persistent vegetative state or die. Furthermore, increased brain tissue PCO2 (> 60 mm Hg) appears to be a useful clinical indicator of critical cerebral ischemia, especially when accompanied by increased lactate concentrations.